38 lines
1.0 KiB
Python
38 lines
1.0 KiB
Python
import base64
|
|
import io
|
|
import json
|
|
|
|
import yaml
|
|
from model_handler import ModelHandler
|
|
from PIL import Image
|
|
|
|
|
|
def init_context(context):
|
|
context.logger.info("Init context... 0%")
|
|
|
|
# Read labels
|
|
with open("/opt/nuclio/function.yaml", 'rb') as function_file:
|
|
functionconfig = yaml.safe_load(function_file)
|
|
|
|
labels_spec = functionconfig['metadata']['annotations']['spec']
|
|
labels = {item['id']: item['name'] for item in json.loads(labels_spec)}
|
|
|
|
# Read the DL model
|
|
model = ModelHandler(labels)
|
|
context.user_data.model = model
|
|
|
|
context.logger.info("Init context...100%")
|
|
|
|
|
|
def handler(context, event):
|
|
context.logger.info("Run YoloV7 ONNX model")
|
|
data = event.body
|
|
buf = io.BytesIO(base64.b64decode(data["image"]))
|
|
threshold = float(data.get("threshold", 0.5))
|
|
image = Image.open(buf).convert("RGB")
|
|
|
|
results = context.user_data.model.infer(image, threshold)
|
|
|
|
return context.Response(body=json.dumps(results), headers={},
|
|
content_type='application/json', status_code=200)
|