---
title: 'Automatic annotation'
linkTitle: 'Automatic annotation'
weight: 16
description: 'Automatic annotation of tasks'
---
Automatic annotation in CVAT is a tool that you can use
to automatically pre-annotate your data with pre-trained models.
CVAT can use models from the following sources:
- [Pre-installed models](#models).
- Models integrated from [Hugging Face and Roboflow](#adding-models-from-hugging-face-and-roboflow).
- {{< ilink "/docs/manual/advanced/serverless-tutorial" "Self-hosted models deployed with Nuclio" >}}.
- {{< ilink "/docs/enterprise/segment-anything-2-tracker" "AI agent functions (SAM2 tracking)" >}}
for CVAT Online and Enterprise.
The following table describes the available options:
| | Self-hosted | Online |
| ------------------------------------------- | ---------------------- | ------------------------------------------------------ |
| **Price** | Free | See [Pricing](https://www.cvat.ai/pricing/cvat-online) |
| **Models** | You have to add models | You can use pre-installed models |
| **Hugging Face & Roboflow
integration** | Not supported | Supported |
| **AI Agent Functions** | Supported (Enterprise) | Supported (SAM2 tracking available) |
See:
- [Running Automatic annotation](#running-automatic-annotation)
- [Labels matching](#labels-matching)
- [Models](#models)
- [Adding models from Hugging Face and Roboflow](#adding-models-from-hugging-face-and-roboflow)
## Running Automatic annotation
To start automatic annotation, do the following:
1. On the top menu, click **Tasks**.
1. Find the task you want to annotate and click **Action** > **Automatic annotation**.

1. In the Automatic annotation dialog, from the drop-down list, select a [model](#models).
1. [Match the labels](#labels-matching) of the model and the task.
1. (Optional) In case you need the model to return masks as polygons, switch toggle **Return masks as polygons**.
1. (Optional) In case you need to remove all previous annotations, switch toggle **Clean old annotations**.
1. (Optional) You can specify a **Threshold** for the model.
If not provided, the default value from the model settings will be used.

1. Click **Annotate**.
CVAT will show the progress of annotation on the progress bar.

You can stop the automatic annotation at any moment by clicking cancel.
## Labels matching
Each model is trained on a dataset and supports only the dataset's labels.
For example:
- DL model has the label `car`.
- Your task (or project) has the label `vehicle`.
To annotate, you need to match these two labels to give
CVAT a hint that, in this case, `car` = `vehicle`.
If you have a label that is not on the list
of DL labels, you will not be able to
match them.
For this reason, supported DL models are suitable only
for certain labels.
To check the list of labels for each model, see [Models](#models)
papers and official documentation.
## Models
Automatic annotation uses pre-installed and added models.
{{% alert title="Note" color="primary" %}}
For self-hosted solutions,
you need to
{{< ilink "/docs/administration/advanced/installation_automatic_annotation" "install Automatic Annotation first" >}}
and {{< ilink "/docs/manual/advanced/models" "add models" >}}.
{{% /alert %}}
List of pre-installed models:
| Model | Description |
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Attributed face detection | Three OpenVINO models work together: