# Copyright (C) 2020-2022 Intel Corporation # Copyright (C) CVAT.ai Corporation # # SPDX-License-Identifier: MIT import json import base64 from PIL import Image import io import numpy as np from model_handler import ModelHandler def init_context(context): context.logger.info("Init context... 0%") model = ModelHandler() context.user_data.model = model context.logger.info("Init context...100%") def handler(context, event): context.logger.info("call handler") data = event.body pos_points = data["pos_points"] neg_points = data["neg_points"] obj_bbox = data.get("obj_bbox", None) threshold = data.get("threshold", 0.8) buf = io.BytesIO(base64.b64decode(data["image"])) image = Image.open(buf) if obj_bbox is None: x, y = np.split(np.transpose(np.array(neg_points)), 2) obj_bbox = [np.min(x), np.min(y), np.max(x), np.max(y)] neg_points = [] mask = context.user_data.model.handle(image, obj_bbox, pos_points, neg_points, threshold) return context.Response( body=json.dumps({ 'mask': mask.tolist() }), headers={}, content_type='application/json', status_code=200 )