metadata: name: pth-dschoerk-transt namespace: cvat annotations: name: TransT type: tracker spec: spec: description: Fast Online Object Tracking and Segmentation runtime: 'python:3.8' handler: main:handler eventTimeout: 30s env: - name: PYTHONPATH value: /opt/nuclio/trans-t build: image: cvat.pth.dschoerk.transt:latest-gpu baseImage: nvidia/cuda:11.7.1-devel-ubuntu20.04 directives: preCopy: - kind: RUN value: |- apt update \ && apt install -y --no-install-recommends \ git \ ca-certificates \ python-is-python3 \ python3 \ python3-pip \ && rm -rf /var/lib/apt/lists/* - kind: WORKDIR value: /opt/nuclio - kind: RUN value: git clone --depth 1 --branch v1.0 https://github.com/dschoerk/TransT trans-t - kind: RUN value: |- pip install \ jsonpickle opencv-python-headless \ torch==1.7.1+cu110 torchvision==0.8.2+cu110 \ --extra-index-url https://download.pytorch.org/whl/cu110 - kind: ADD value: https://drive.google.com/uc?id=1Pq0sK-9jmbLAVtgB9-dPDc2pipCxYdM5 /transt.pth triggers: myHttpTrigger: numWorkers: 1 kind: 'http' workerAvailabilityTimeoutMilliseconds: 10000 attributes: # Set value from the calculation of tracking of 100 objects at the same time on a 4k image maxRequestBodySize: 268435456 # 256MB resources: limits: nvidia.com/gpu: 1 platform: attributes: restartPolicy: name: always maximumRetryCount: 3 mountMode: volume