# Copyright (C) CVAT.ai Corporation # # SPDX-License-Identifier: MIT import os import types from collections.abc import Mapping from typing import Callable, Optional import torchvision.datasets import cvat_sdk.core import cvat_sdk.core.exceptions from cvat_sdk.datasets.caching import UpdatePolicy, make_cache_manager from cvat_sdk.datasets.task_dataset import TaskDataset from cvat_sdk.pytorch.common import Target _NUM_DOWNLOAD_THREADS = 4 class TaskVisionDataset(torchvision.datasets.VisionDataset): """ Represents a task on a CVAT server as a PyTorch Dataset. This dataset contains one sample for each frame in the task, in the same order as the frames are in the task. Deleted frames are omitted. Before transforms are applied, each sample is a tuple of (image, target), where: * image is a `PIL.Image.Image` object for the corresponding frame. * target is a `Target` object containing annotations for the frame. This class caches all data and annotations for the task on the local file system during construction. Limitations: * Only tasks with image (not video) data are supported at the moment. * Track annotations are currently not accessible. """ def __init__( self, client: cvat_sdk.core.Client, task_id: int, *, transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, label_name_to_index: Mapping[str, int] = None, update_policy: UpdatePolicy = UpdatePolicy.IF_MISSING_OR_STALE, ) -> None: """ Creates a dataset corresponding to the task with ID `task_id` on the server that `client` is connected to. `transforms`, `transform` and `target_transforms` are optional transformation functions; see the documentation for `torchvision.datasets.VisionDataset` for more information. `label_name_to_index` affects the `label_id_to_index` member in `Target` objects returned by the dataset. If it is specified, then it must contain an entry for each label name in the task. The `label_id_to_index` mapping will be constructed so that each label will be mapped to the index corresponding to the label's name in `label_name_to_index`. If `label_name_to_index` is unspecified or set to `None`, then `label_id_to_index` will map each label ID to a distinct integer in the range [0, `num_labels`), where `num_labels` is the number of labels defined in the task. This mapping will be generally unpredictable, but consistent for a given task. `update_policy` determines when and if the local cache will be updated. """ self._underlying = TaskDataset(client, task_id, update_policy=update_policy) cache_manager = make_cache_manager(client, update_policy) super().__init__( os.fspath(cache_manager.task_dir(task_id)), transforms=transforms, transform=transform, target_transform=target_transform, ) if label_name_to_index is None: self._label_id_to_index = types.MappingProxyType( { label.id: label_index for label_index, label in enumerate( sorted(self._underlying.labels, key=lambda l: l.id) ) } ) else: self._label_id_to_index = types.MappingProxyType( {label.id: label_name_to_index[label.name] for label in self._underlying.labels} ) def __getitem__(self, sample_index: int): """ Returns the sample with index `sample_index`. `sample_index` must satisfy the condition `0 <= sample_index < len(self)`. """ sample = self._underlying.samples[sample_index] sample_image = sample.media.load_image() sample_target = Target(sample.annotations, self._label_id_to_index) if self.transforms: sample_image, sample_target = self.transforms(sample_image, sample_target) return sample_image, sample_target def __len__(self) -> int: """Returns the number of samples in the dataset.""" return len(self._underlying.samples)