43 lines
1.2 KiB
Python
43 lines
1.2 KiB
Python
|
|
# Copyright (C) 2020-2022 Intel Corporation
|
||
|
|
# Copyright (C) CVAT.ai Corporation
|
||
|
|
#
|
||
|
|
# SPDX-License-Identifier: MIT
|
||
|
|
|
||
|
|
import json
|
||
|
|
import base64
|
||
|
|
from PIL import Image
|
||
|
|
import io
|
||
|
|
import numpy as np
|
||
|
|
from model_handler import ModelHandler
|
||
|
|
|
||
|
|
def init_context(context):
|
||
|
|
context.logger.info("Init context... 0%")
|
||
|
|
|
||
|
|
model = ModelHandler()
|
||
|
|
context.user_data.model = model
|
||
|
|
|
||
|
|
context.logger.info("Init context...100%")
|
||
|
|
|
||
|
|
def handler(context, event):
|
||
|
|
context.logger.info("call handler")
|
||
|
|
data = event.body
|
||
|
|
pos_points = data["pos_points"]
|
||
|
|
neg_points = data["neg_points"]
|
||
|
|
obj_bbox = data.get("obj_bbox", None)
|
||
|
|
threshold = data.get("threshold", 0.8)
|
||
|
|
buf = io.BytesIO(base64.b64decode(data["image"]))
|
||
|
|
image = Image.open(buf)
|
||
|
|
|
||
|
|
if obj_bbox is None:
|
||
|
|
x, y = np.split(np.transpose(np.array(neg_points)), 2)
|
||
|
|
obj_bbox = [np.min(x), np.min(y), np.max(x), np.max(y)]
|
||
|
|
neg_points = []
|
||
|
|
|
||
|
|
mask = context.user_data.model.handle(image, obj_bbox, pos_points, neg_points, threshold)
|
||
|
|
return context.Response(
|
||
|
|
body=json.dumps({ 'mask': mask.tolist() }),
|
||
|
|
headers={},
|
||
|
|
content_type='application/json',
|
||
|
|
status_code=200
|
||
|
|
)
|