37 lines
1.0 KiB
Python
37 lines
1.0 KiB
Python
|
|
import base64
|
||
|
|
import io
|
||
|
|
import json
|
||
|
|
|
||
|
|
import numpy as np
|
||
|
|
from model_handler import ModelHandler
|
||
|
|
from PIL import Image
|
||
|
|
|
||
|
|
|
||
|
|
def init_context(context):
|
||
|
|
context.logger.info("Init context... 0%")
|
||
|
|
model = ModelHandler()
|
||
|
|
context.user_data.model = model
|
||
|
|
context.logger.info("Init context...100%")
|
||
|
|
|
||
|
|
def handler(context, event):
|
||
|
|
context.logger.info("Run TransT model")
|
||
|
|
data = event.body
|
||
|
|
buf = io.BytesIO(base64.b64decode(data["image"]))
|
||
|
|
shapes = data.get("shapes")
|
||
|
|
states = data.get("states")
|
||
|
|
|
||
|
|
image = Image.open(buf).convert('RGB')
|
||
|
|
image = np.array(image)[:, :, ::-1].copy()
|
||
|
|
|
||
|
|
results = {
|
||
|
|
'shapes': [],
|
||
|
|
'states': []
|
||
|
|
}
|
||
|
|
for i, shape in enumerate(shapes):
|
||
|
|
shape, state = context.user_data.model.infer(image, shape, states[i] if i < len(states) else None)
|
||
|
|
results['shapes'].append(shape)
|
||
|
|
results['states'].append(state)
|
||
|
|
|
||
|
|
return context.Response(body=json.dumps(results), headers={},
|
||
|
|
content_type='application/json', status_code=200)
|