234 lines
7.8 KiB
Python
234 lines
7.8 KiB
Python
|
|
# Copyright (C) 2020-2022 Intel Corporation
|
||
|
|
# Copyright (C) CVAT.ai Corporation
|
||
|
|
#
|
||
|
|
# SPDX-License-Identifier: MIT
|
||
|
|
|
||
|
|
import os
|
||
|
|
import cv2
|
||
|
|
import numpy as np
|
||
|
|
from model_loader import ModelLoader
|
||
|
|
from shared import to_cvat_mask
|
||
|
|
|
||
|
|
|
||
|
|
class PixelLinkDecoder():
|
||
|
|
def __init__(self, pixel_threshold, link_threshold):
|
||
|
|
four_neighbours = False
|
||
|
|
if four_neighbours:
|
||
|
|
self._get_neighbours = self._get_neighbours_4
|
||
|
|
else:
|
||
|
|
self._get_neighbours = self._get_neighbours_8
|
||
|
|
self.pixel_conf_threshold = pixel_threshold
|
||
|
|
self.link_conf_threshold = link_threshold
|
||
|
|
|
||
|
|
def decode(self, height, width, detections: dict):
|
||
|
|
self.image_height = height
|
||
|
|
self.image_width = width
|
||
|
|
self.pixel_scores = self._set_pixel_scores(detections['model/segm_logits/add'])
|
||
|
|
self.link_scores = self._set_link_scores(detections['model/link_logits_/add'])
|
||
|
|
|
||
|
|
self.pixel_mask = self.pixel_scores >= self.pixel_conf_threshold
|
||
|
|
self.link_mask = self.link_scores >= self.link_conf_threshold
|
||
|
|
self.points = list(zip(*np.where(self.pixel_mask)))
|
||
|
|
self.h, self.w = np.shape(self.pixel_mask)
|
||
|
|
self.group_mask = dict.fromkeys(self.points, -1)
|
||
|
|
self.bboxes = None
|
||
|
|
self.root_map = None
|
||
|
|
self.mask = None
|
||
|
|
|
||
|
|
self._decode()
|
||
|
|
|
||
|
|
def _softmax(self, x, axis=None):
|
||
|
|
return np.exp(x - self._logsumexp(x, axis=axis, keepdims=True))
|
||
|
|
|
||
|
|
# pylint: disable=no-self-use
|
||
|
|
def _logsumexp(self, a, axis=None, b=None, keepdims=False, return_sign=False):
|
||
|
|
if b is not None:
|
||
|
|
a, b = np.broadcast_arrays(a, b)
|
||
|
|
if np.any(b == 0):
|
||
|
|
a = a + 0. # promote to at least float
|
||
|
|
a[b == 0] = -np.inf
|
||
|
|
|
||
|
|
a_max = np.amax(a, axis=axis, keepdims=True)
|
||
|
|
|
||
|
|
if a_max.ndim > 0:
|
||
|
|
a_max[~np.isfinite(a_max)] = 0
|
||
|
|
elif not np.isfinite(a_max):
|
||
|
|
a_max = 0
|
||
|
|
|
||
|
|
if b is not None:
|
||
|
|
b = np.asarray(b)
|
||
|
|
tmp = b * np.exp(a - a_max)
|
||
|
|
else:
|
||
|
|
tmp = np.exp(a - a_max)
|
||
|
|
|
||
|
|
# suppress warnings about log of zero
|
||
|
|
with np.errstate(divide='ignore'):
|
||
|
|
s = np.sum(tmp, axis=axis, keepdims=keepdims)
|
||
|
|
if return_sign:
|
||
|
|
sgn = np.sign(s)
|
||
|
|
s *= sgn # /= makes more sense but we need zero -> zero
|
||
|
|
out = np.log(s)
|
||
|
|
|
||
|
|
if not keepdims:
|
||
|
|
a_max = np.squeeze(a_max, axis=axis)
|
||
|
|
out += a_max
|
||
|
|
|
||
|
|
if return_sign:
|
||
|
|
return out, sgn
|
||
|
|
else:
|
||
|
|
return out
|
||
|
|
|
||
|
|
def _set_pixel_scores(self, pixel_scores):
|
||
|
|
"get softmaxed properly shaped pixel scores"
|
||
|
|
tmp = np.transpose(pixel_scores, (0, 2, 3, 1))
|
||
|
|
return self._softmax(tmp, axis=-1)[0, :, :, 1]
|
||
|
|
|
||
|
|
def _set_link_scores(self, link_scores):
|
||
|
|
"get softmaxed properly shaped links scores"
|
||
|
|
tmp = np.transpose(link_scores, (0, 2, 3, 1))
|
||
|
|
tmp_reshaped = tmp.reshape(tmp.shape[:-1] + (8, 2))
|
||
|
|
return self._softmax(tmp_reshaped, axis=-1)[0, :, :, :, 1]
|
||
|
|
|
||
|
|
def _find_root(self, point):
|
||
|
|
root = point
|
||
|
|
update_parent = False
|
||
|
|
tmp = self.group_mask[root]
|
||
|
|
while tmp != -1:
|
||
|
|
root = tmp
|
||
|
|
tmp = self.group_mask[root]
|
||
|
|
update_parent = True
|
||
|
|
if update_parent:
|
||
|
|
self.group_mask[point] = root
|
||
|
|
return root
|
||
|
|
|
||
|
|
def _join(self, p1, p2):
|
||
|
|
root1 = self._find_root(p1)
|
||
|
|
root2 = self._find_root(p2)
|
||
|
|
if root1 != root2:
|
||
|
|
self.group_mask[root2] = root1
|
||
|
|
|
||
|
|
def _get_index(self, root):
|
||
|
|
if root not in self.root_map:
|
||
|
|
self.root_map[root] = len(self.root_map) + 1
|
||
|
|
return self.root_map[root]
|
||
|
|
|
||
|
|
def _get_all(self):
|
||
|
|
self.root_map = {}
|
||
|
|
self.mask = np.zeros_like(self.pixel_mask, dtype=np.int32)
|
||
|
|
|
||
|
|
for point in self.points:
|
||
|
|
point_root = self._find_root(point)
|
||
|
|
bbox_idx = self._get_index(point_root)
|
||
|
|
self.mask[point] = bbox_idx
|
||
|
|
|
||
|
|
def _get_neighbours_8(self, x, y):
|
||
|
|
w, h = self.w, self.h
|
||
|
|
tmp = [(0, x - 1, y - 1), (1, x, y - 1),
|
||
|
|
(2, x + 1, y - 1), (3, x - 1, y),
|
||
|
|
(4, x + 1, y), (5, x - 1, y + 1),
|
||
|
|
(6, x, y + 1), (7, x + 1, y + 1)]
|
||
|
|
|
||
|
|
return [i for i in tmp if i[1] >= 0 and i[1] < w and i[2] >= 0 and i[2] < h]
|
||
|
|
|
||
|
|
def _get_neighbours_4(self, x, y):
|
||
|
|
w, h = self.w, self.h
|
||
|
|
tmp = [(1, x, y - 1),
|
||
|
|
(3, x - 1, y),
|
||
|
|
(4, x + 1, y),
|
||
|
|
(6, x, y + 1)]
|
||
|
|
|
||
|
|
return [i for i in tmp if i[1] >= 0 and i[1] < w and i[2] >= 0 and i[2] < h]
|
||
|
|
|
||
|
|
def _mask_to_bboxes(self, min_area=300, min_height=10):
|
||
|
|
self.bboxes = []
|
||
|
|
max_bbox_idx = self.mask.max()
|
||
|
|
mask_tmp = cv2.resize(self.mask, (self.image_width, self.image_height), interpolation=cv2.INTER_NEAREST)
|
||
|
|
|
||
|
|
for bbox_idx in range(1, max_bbox_idx + 1):
|
||
|
|
bbox_mask = mask_tmp == bbox_idx
|
||
|
|
cnts, _ = cv2.findContours(bbox_mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||
|
|
if len(cnts) == 0:
|
||
|
|
continue
|
||
|
|
cnt = cnts[0]
|
||
|
|
rect, w, h = self._min_area_rect(cnt)
|
||
|
|
if min(w, h) < min_height:
|
||
|
|
continue
|
||
|
|
if w * h < min_area:
|
||
|
|
continue
|
||
|
|
self.bboxes.append(self._order_points(rect))
|
||
|
|
|
||
|
|
# pylint: disable=no-self-use
|
||
|
|
def _min_area_rect(self, cnt):
|
||
|
|
rect = cv2.minAreaRect(cnt)
|
||
|
|
w, h = rect[1]
|
||
|
|
box = cv2.boxPoints(rect)
|
||
|
|
box = np.int0(box)
|
||
|
|
return box, w, h
|
||
|
|
|
||
|
|
# pylint: disable=no-self-use
|
||
|
|
def _order_points(self, rect):
|
||
|
|
""" (x, y)
|
||
|
|
Order: TL, TR, BR, BL
|
||
|
|
"""
|
||
|
|
tmp = np.zeros_like(rect)
|
||
|
|
sums = rect.sum(axis=1)
|
||
|
|
tmp[0] = rect[np.argmin(sums)]
|
||
|
|
tmp[2] = rect[np.argmax(sums)]
|
||
|
|
diff = np.diff(rect, axis=1)
|
||
|
|
tmp[1] = rect[np.argmin(diff)]
|
||
|
|
tmp[3] = rect[np.argmax(diff)]
|
||
|
|
return tmp
|
||
|
|
|
||
|
|
def _decode(self):
|
||
|
|
for point in self.points:
|
||
|
|
y, x = point
|
||
|
|
neighbours = self._get_neighbours(x, y)
|
||
|
|
for n_idx, nx, ny in neighbours:
|
||
|
|
link_value = self.link_mask[y, x, n_idx]
|
||
|
|
pixel_cls = self.pixel_mask[ny, nx]
|
||
|
|
if link_value and pixel_cls:
|
||
|
|
self._join(point, (ny, nx))
|
||
|
|
|
||
|
|
self._get_all()
|
||
|
|
self._mask_to_bboxes()
|
||
|
|
|
||
|
|
class ModelHandler:
|
||
|
|
def __init__(self, labels):
|
||
|
|
base_dir = os.path.abspath(os.environ.get("MODEL_PATH",
|
||
|
|
"/opt/nuclio/open_model_zoo/intel/text-detection-0004/FP32"))
|
||
|
|
model_xml = os.path.join(base_dir, "text-detection-0004.xml")
|
||
|
|
model_bin = os.path.join(base_dir, "text-detection-0004.bin")
|
||
|
|
self.model = ModelLoader(model_xml, model_bin)
|
||
|
|
self.labels = labels
|
||
|
|
|
||
|
|
def infer(self, image, pixel_threshold, link_threshold):
|
||
|
|
output_layer = self.model.infer(image)
|
||
|
|
|
||
|
|
results = []
|
||
|
|
obj_class = 1
|
||
|
|
pcd = PixelLinkDecoder(pixel_threshold, link_threshold)
|
||
|
|
|
||
|
|
pcd.decode(image.height, image.width, output_layer)
|
||
|
|
for box in pcd.bboxes:
|
||
|
|
mask = pcd.pixel_mask
|
||
|
|
mask = np.array(mask, dtype=np.uint8)
|
||
|
|
mask = cv2.resize(mask, dsize=(image.width, image.height), interpolation=cv2.INTER_CUBIC)
|
||
|
|
cv2.normalize(mask, mask, 0, 255, cv2.NORM_MINMAX)
|
||
|
|
|
||
|
|
box = box.ravel().tolist()
|
||
|
|
x_min = min(box[::2])
|
||
|
|
x_max = max(box[::2])
|
||
|
|
y_min = min(box[1::2])
|
||
|
|
y_max = max(box[1::2])
|
||
|
|
cvat_mask = to_cvat_mask((x_min, y_min, x_max, y_max), mask)
|
||
|
|
|
||
|
|
results.append({
|
||
|
|
"confidence": None,
|
||
|
|
"label": self.labels.get(obj_class, "unknown"),
|
||
|
|
"points": box,
|
||
|
|
"mask": cvat_mask,
|
||
|
|
"type": "mask",
|
||
|
|
})
|
||
|
|
|
||
|
|
return results
|