85 lines
3.6 KiB
Python
85 lines
3.6 KiB
Python
|
|
# Copyright (C) 2018-2022 Intel Corporation
|
||
|
|
#
|
||
|
|
# SPDX-License-Identifier: MIT
|
||
|
|
|
||
|
|
import cv2
|
||
|
|
import numpy as np
|
||
|
|
import os
|
||
|
|
from model_loader import ModelLoader
|
||
|
|
|
||
|
|
class ModelHandler:
|
||
|
|
def __init__(self):
|
||
|
|
base_dir = os.path.abspath(os.environ.get("MODEL_PATH", "/opt/nuclio"))
|
||
|
|
model_xml = os.path.join(base_dir, "dextr.xml")
|
||
|
|
model_bin = os.path.join(base_dir, "dextr.bin")
|
||
|
|
self.model = ModelLoader(model_xml, model_bin)
|
||
|
|
|
||
|
|
# Input:
|
||
|
|
# image: PIL image
|
||
|
|
# points: [[x1,y1], [x2,y2], [x3,y3], [x4,y4], ...]
|
||
|
|
# Output:
|
||
|
|
# polygon: [[x1,y1], [x2,y2], [x3,y3], [x4,y4], ...]
|
||
|
|
# mask: [[a, a, a, a, a, ...], [a, a, a, a, ...], ...]
|
||
|
|
def handle(self, image, points):
|
||
|
|
DEXTR_PADDING = 50
|
||
|
|
DEXTR_THRESHOLD = 0.8
|
||
|
|
DEXTR_SIZE = 512
|
||
|
|
|
||
|
|
numpy_image = np.array(image)
|
||
|
|
points = np.asarray(points, dtype=int)
|
||
|
|
bounding_box = (
|
||
|
|
max(min(points[:, 0]) - DEXTR_PADDING, 0),
|
||
|
|
max(min(points[:, 1]) - DEXTR_PADDING, 0),
|
||
|
|
min(max(points[:, 0]) + DEXTR_PADDING, numpy_image.shape[1] - 1),
|
||
|
|
min(max(points[:, 1]) + DEXTR_PADDING, numpy_image.shape[0] - 1)
|
||
|
|
)
|
||
|
|
|
||
|
|
# Prepare an image
|
||
|
|
numpy_cropped = np.array(image.crop(bounding_box))
|
||
|
|
resized = cv2.resize(numpy_cropped, (DEXTR_SIZE, DEXTR_SIZE),
|
||
|
|
interpolation = cv2.INTER_CUBIC).astype(np.float32)
|
||
|
|
if len(resized.shape) == 2: # support grayscale images
|
||
|
|
resized = cv2.cvtColor(resized, cv2.COLOR_GRAY2RGB)
|
||
|
|
elif resized.shape[2] == 4: # remove alpha channel
|
||
|
|
resized = resized[:, :, :3]
|
||
|
|
|
||
|
|
# Make a heatmap
|
||
|
|
points = points - [bounding_box[0], bounding_box[1]]
|
||
|
|
points = (points * [DEXTR_SIZE / numpy_cropped.shape[1], DEXTR_SIZE / numpy_cropped.shape[0]]).astype(int)
|
||
|
|
heatmap = np.zeros(shape=resized.shape[:2], dtype=np.float64)
|
||
|
|
for point in points:
|
||
|
|
gaussian_x_axis = np.arange(0, DEXTR_SIZE, 1, float) - point[0]
|
||
|
|
gaussian_y_axis = np.arange(0, DEXTR_SIZE, 1, float)[:, np.newaxis] - point[1]
|
||
|
|
gaussian = np.exp(-4 * np.log(2) * ((gaussian_x_axis ** 2 + gaussian_y_axis ** 2) / 100)).astype(np.float64)
|
||
|
|
heatmap = np.maximum(heatmap, gaussian)
|
||
|
|
cv2.normalize(heatmap, heatmap, 0, 255, cv2.NORM_MINMAX)
|
||
|
|
|
||
|
|
# Concat an image and a heatmap
|
||
|
|
input_dextr = np.concatenate((resized, heatmap[:, :, np.newaxis].astype(resized.dtype)), axis=2)
|
||
|
|
input_dextr = input_dextr.transpose((2,0,1))
|
||
|
|
|
||
|
|
pred = self.model.infer(input_dextr[np.newaxis, ...], False)[0, 0, :, :]
|
||
|
|
pred = (pred > DEXTR_THRESHOLD).astype(np.uint8)
|
||
|
|
pred = cv2.resize(pred, tuple(reversed(numpy_cropped.shape[:2])), interpolation = cv2.INTER_NEAREST)
|
||
|
|
result = np.zeros(numpy_image.shape[:2]).astype(np.uint8)
|
||
|
|
result[bounding_box[1]:bounding_box[1] + pred.shape[0], bounding_box[0]:bounding_box[0] + pred.shape[1]] = pred
|
||
|
|
|
||
|
|
# Convert a mask to a polygon
|
||
|
|
contours = None
|
||
|
|
if int(cv2.__version__.split('.')[0]) > 3:
|
||
|
|
contours = cv2.findContours(result, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
|
||
|
|
else:
|
||
|
|
contours = cv2.findContours(result, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1]
|
||
|
|
|
||
|
|
contours = max(contours, key=lambda arr: arr.size)
|
||
|
|
if contours.shape.count(1):
|
||
|
|
contours = np.squeeze(contours)
|
||
|
|
if contours.size < 3 * 2:
|
||
|
|
raise Exception('Less then three point have been detected. Can not build a polygon.')
|
||
|
|
|
||
|
|
polygon = []
|
||
|
|
for point in contours:
|
||
|
|
polygon.append([int(point[0]), int(point[1])])
|
||
|
|
|
||
|
|
return result, polygon
|