拆分港口工具

master
陈增辉 2025-09-22 15:07:12 +08:00
parent dd10658c05
commit e032838c39
2 changed files with 287 additions and 0 deletions

View File

@ -0,0 +1,287 @@
from osgeo import ogr
import os
import argparse
from osgeo import ogr, gdal
import os
import argparse
import numpy as np
from scipy.spatial import KDTree
from tools.DotaOperator import DotaObj,readDotaFile,writerDotaFile,createDota
from glob import glob
from pathlib import Path
import shutil
"""
1. 港口5000x5000军港与民港切片
a. 预标注框给他们
b. 重叠率25%重复
c. 军民2000m 以内影像抽出来
d. 原影像如果只有 1 个港口- 港口类型
个港口- 远近如果港口距离1000m ,单独拉出来
"""
MLCName="MLC"
JLCName="JLC"
MJLCName="MJLC"
NOLCName="NOLC"
def find_tif_files_pathlib(directory):
path = Path(directory)
# 使用rglob递归匹配所有.tif和.tiff文件
tif_files = list(path.rglob('*.tiff'))+list(path.rglob('*.tif'))
# 将Path对象转换为字符串路径
return [str(file) for file in tif_files]
def find_srcPath(srcFolder):
root_path = Path(srcFolder)
target_path = [folderpath for folderpath in root_path.rglob("*") if folderpath.is_dir() and folderpath.name=="0-原图"]
tiff_files = []
for folderpath in target_path:
tiff_files=tiff_files+find_tif_files_pathlib(folderpath)
tiff_dict={}
for filepath in tiff_files:
rootname=Path(filepath).stem
tiff_dict[rootname]=filepath
return tiff_dict
def read_tifInfo(path):
dataset = gdal.Open(path) # 打开TIF文件
if dataset is None:
print("无法打开文件,读取文件信息")
return None, None, None
cols = dataset.RasterXSize # 图像宽度
rows = dataset.RasterYSize # 图像高度
bands = dataset.RasterCount
im_proj = dataset.GetProjection() # 获取投影信息
im_Geotrans = dataset.GetGeoTransform() # 获取仿射变换信息
# im_data = dataset.ReadAsArray(0, 0, cols, rows) # 读取栅格数据为NumPy数组
print("行数:", rows)
print("列数:", cols)
print("波段:", bands)
x1=im_Geotrans[0]+im_Geotrans[1]*0
x2=im_Geotrans[0]+im_Geotrans[1]*cols
y1=im_Geotrans[3]+im_Geotrans[5]*0
y2=im_Geotrans[3]+im_Geotrans[5]*rows
xmin=min(x1,x2)
xmax=max(x1,x2)
ymin=min(y1,y2)
ymax=max(y1,y2)
geoExtend=[xmin,ymin,xmax,ymax]
del dataset # 关闭数据集
return im_proj, im_Geotrans,geoExtend
def getshapefileInfo(shp_path):
"""
将Shapefile转换为DOTA格式
:param shp_path: Shapefile文件路径
"""
geom_points=[]
print("shapefile: ",shp_path)
# 注册所有驱动
ogr.RegisterAll()
# 打开Shapefile文件
driver = ogr.GetDriverByName('ESRI Shapefile')
datasource = driver.Open(shp_path, 0)
if datasource is None:
print("无法打开Shapefile文件")
return
print("layer count: ",datasource.GetLayerCount())
for layerid in range(datasource.GetLayerCount()):
print("layer id: ",layerid)
# 获取图层
layer = datasource.GetLayer(layerid)
layer_defn=layer.GetLayerDefn()
field_count=layer_defn.GetFieldCount()
print("field_count:", field_count)
for i in range (field_count):
field_defn=layer_defn.GetFieldDefn(i)
field_name=field_defn.GetName()
field_type=field_defn.GetType()
field_type_name=field_defn.GetFieldTypeName(field_type)
print("field_name:", field_name, field_type_name, field_type_name)
for feature in layer:
geom = feature.GetGeometryRef()
if geom.GetGeometryName() == 'POINT':
x=geom.GetX()
y=geom.GetY()
geom_points.append([x,y])
return np.array(geom_points)
def getTiffsInfo(tiffnames,folderpath):
"""
获取所有影像的几何信息
Args:
tiff_paths: tiff列表
Returns:
"""
tiffdict={}
for tiff_name in tiffnames:
if tiff_name.endswith(".tiff"):
tiff_path=os.path.join(folderpath,tiff_name)
im_proj, im_Geotrans, geoExtend=read_tifInfo(tiff_path)
tiffdict[tiff_name]={"geoExtend":geoExtend,"geoTrans":im_Geotrans,"imProj":im_proj}
return tiffdict
def getMJSignal(tiffpath,shipPortTree):
im_proj, im_Geotrans, geoExtend = read_tifInfo(tiffpath) # geoExtend : [xmin,ymin,xmax,ymax]
[xmin, ymin, xmax, ymax]=geoExtend
center_x = (xmin + xmax) / 2.0
center_y = (ymin + ymax) / 2.0
center_point = [center_x, center_y]
# 2. 计算能够覆盖整个矩形区域的最小半径(中心点到任一角点的最大距离)
radius_to_corner = np.sqrt((xmax - center_x) ** 2 + (ymax - center_y) ** 2)
MLCFlag=False
JLCFlag=False
## MLC
if MLCName in shipPortTree and not shipPortTree[MLCName] is None:
# 3. 使用 query_ball_point 查找以中心点为圆心radius_to_corner 为半径的圆内的所有点的索引
potential_indices = shipPortTree[MLCName].query_ball_point(center_point, r=radius_to_corner)
# 4. 获取这些潜在点的实际坐标
# 假设你的 KDTree 是从 data_points 构建的MLCTree = KDTree(data_points)
potential_points = shipPortTree[MLCName].data[potential_indices] # 这是所有潜在点的坐标数组
# 5. 进行精确的矩形范围过滤
# 条件判断x 坐标在 xmin 和 xmax 之间,且 y 坐标在 ymin 和 ymax 之间
x_in_range = (potential_points[:, 0] >= xmin) & (potential_points[:, 0] <= xmax)
y_in_range = (potential_points[:, 1] >= ymin) & (potential_points[:, 1] <= ymax)
within_rect_indices_mask = x_in_range & y_in_range
# 6. 获取最终在矩形范围内的点的坐标(在原始 data_points 中的索引是 potential_indices[within_rect_indices_mask]
final_points = potential_points[within_rect_indices_mask]
# final_points 就是你要的矩形范围内的点
# 如果你需要的是这些点在原始数据中的索引,而不是坐标本身:
final_indices = np.array(potential_indices)[within_rect_indices_mask]
MLCFlag=True
if JLCName in shipPortTree and not shipPortTree[JLCName] is None:
# 3. 使用 query_ball_point 查找以中心点为圆心radius_to_corner 为半径的圆内的所有点的索引
potential_indices = shipPortTree[JLCName].query_ball_point(center_point, r=radius_to_corner)
# 4. 获取这些潜在点的实际坐标
# 假设你的 KDTree 是从 data_points 构建的MLCTree = KDTree(data_points)
potential_points = shipPortTree[JLCName].data[potential_indices] # 这是所有潜在点的坐标数组
# 5. 进行精确的矩形范围过滤
# 条件判断x 坐标在 xmin 和 xmax 之间,且 y 坐标在 ymin 和 ymax 之间
x_in_range = (potential_points[:, 0] >= xmin) & (potential_points[:, 0] <= xmax)
y_in_range = (potential_points[:, 1] >= ymin) & (potential_points[:, 1] <= ymax)
within_rect_indices_mask = x_in_range & y_in_range
# 6. 获取最终在矩形范围内的点的坐标(在原始 data_points 中的索引是 potential_indices[within_rect_indices_mask]
final_points = potential_points[within_rect_indices_mask]
# final_points 就是你要的矩形范围内的点
# 如果你需要的是这些点在原始数据中的索引,而不是坐标本身:
final_indices = np.array(potential_indices)[within_rect_indices_mask]
JLCFlag=True
# 处理软件
return MLCFlag,JLCFlag
def getTiffInPort(shipPortTree,srcFolderPath_0img,outTiffInfoFilePath):
tiffpaths=find_tif_files_pathlib(srcFolderPath_0img)
tiffLCPort={
MLCName:[],
JLCName:[],
MJLCName:[],
NOLCName:[]
}
for tiffpath in tiffpaths:
MLCFlag,JLCFlag=getMJSignal(tiffpath,shipPortTree)
if MLCFlag and JLCFlag:
tiffLCPort[MJLCName].append(tiffpath)
elif MLCFlag:
tiffLCPort[MJLCName].append(tiffpath)
elif JLCFlag:
tiffLCPort[JLCName].append(tiffpath)
else:
tiffLCPort[NOLCName].append(tiffpath)
# 输出文件
with open(outTiffInfoFilePath,'w',encoding="utf-8") as f:
for k in tiffLCPort:
for tiffpath in tiffLCPort[k]:
f.write("{} {}\n".format(k,tiffpath))
def SpliteProcess(srcfolderpath,outfolderpath,MLCPath,JLCPath,JMLCPath):
shipPort={
MLCName:getshapefileInfo(MLCPath),
JLCName:getshapefileInfo(JLCPath),
# "JMLC":getshapefileInfo(JMLCPath), # 舰船不区分 居民一体
}
shipPortTree={
MLCName:KDTree(shipPort[MLCName]),
JLCName:KDTree(shipPort[JLCName]),
# "JMLC":KDTree(shipPort["JMLC"]),
}
srcFolderPath_0img=os.path.join(srcfolderpath,"0-原图") # 0-原图 文件路径
outTiffInfoFilePath=os.path.join(srcfolderpath,"JMPort.txt")
return True
pass
def getParams():
parser = argparse.ArgumentParser()
parser.add_argument('-s','--srcfolder',type=str,default=r'R:\TYSAR-德清院\TYSAR-条带模式(SM)\港口\20250903-不分类', help='输入shapefile文件')
parser.add_argument('-o', '--outfolder',type=str,default=r'D:\TYSAR-德清院\TYSAR-条带模式(SM)\港口\20250903-不分类', help='输出geojson文件')
parser.add_argument('-m', '--mLC',type=str,help=r'MLC', default=r'D:\TYSAR-德清院\目标点位信息更新\0828目标点位\港口(民船).shp')
parser.add_argument('-j', '--jLC',type=str,help=r'JLC' ,default=r'D:\TYSAR-德清院\目标点位信息更新\0828目标点位\军港.shp')
parser.add_argument('-jm', '--jmLC',type=str,help=r'MJLC', default=r'D:\TYSAR-德清院\目标点位信息更新\0828目标点位\军民一体港口.shp')
args = parser.parse_args()
return args
if __name__ == '__main__':
try:
parser = getParams()
srcfolder=parser.srcfolder
outfolder=parser.outfolder
mLCPath=parser.mLC
jLCPath=parser.jLC
jmLCPath=parser.jmLC
print('srcfolder=',srcfolder)
print('outfolder=',outfolder)
print('mLCPath=',mLCPath)
print('jLCPath=',jLCPath)
print('jmLCPath=',jmLCPath)
SpliteProcess(srcfolder,outfolder,mLCPath,jLCPath,jmLCPath)
exit(2)
except Exception as e:
print(e)
exit(3)