移动港口切分文件

master
chenzenghui 2025-09-22 15:54:22 +08:00
parent 2b3b14fa83
commit 2b72ea22db
3 changed files with 826 additions and 10 deletions

View File

@ -0,0 +1,407 @@
"""
2025.09.16 切片增加后缀 _image.png _image.tiff
2025.09.22 增加港口切片要求
"""
from osgeo import ogr, gdal
import os
import argparse
import numpy as np
from PIL import Image
import math
from pathlib import Path
sliceSize=1024
BlockOverLayer=0.25
def get_filename_without_ext(path):
base_name = os.path.basename(path)
if '.' not in base_name or base_name.startswith('.'):
return base_name
return base_name.rsplit('.', 1)[0]
def read_tif(path):
dataset = gdal.Open(path) # 打开TIF文件
if dataset is None:
print("无法打开文件")
return None, None, None
cols = dataset.RasterXSize # 图像宽度
rows = dataset.RasterYSize # 图像高度
bands = dataset.RasterCount
im_proj = dataset.GetProjection() # 获取投影信息
im_Geotrans = dataset.GetGeoTransform() # 获取仿射变换信息
im_data = dataset.ReadAsArray(0, 0, cols, rows) # 读取栅格数据为NumPy数组
print("行数:", rows)
print("列数:", cols)
print("波段:", bands)
del dataset # 关闭数据集
return im_proj, im_Geotrans, im_data
def write_envi(im_data, im_geotrans, im_proj, output_path):
"""
将数组数据写入ENVI格式文件
:param im_data: 输入的numpy数组2D或3D
:param im_geotrans: 仿射变换参数6元组
:param im_proj: 投影信息WKT字符串
:param output_path: 输出文件路径无需扩展名会自动生成.dat和.hdr
"""
im_bands = 1
im_height, im_width = im_data.shape
# 创建ENVI格式驱动
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(output_path, im_width, im_height, 1, gdal.GDT_Byte)
if dataset is not None:
dataset.SetGeoTransform(im_geotrans) # 设置地理变换参数
dataset.SetProjection(im_proj) # 设置投影
dataset.GetRasterBand(1).WriteArray(im_data)
dataset.FlushCache() # 确保数据写入磁盘
dataset = None # 关闭文件
def write_tiff(im_data, im_geotrans, im_proj, output_path):
"""
将数组数据写入ENVI格式文件
:param im_data: 输入的numpy数组2D或3D
:param im_geotrans: 仿射变换参数6元组
:param im_proj: 投影信息WKT字符串
:param output_path: 输出文件路径无需扩展名会自动生成.dat和.hdr
"""
im_bands = 1
im_height, im_width = im_data.shape
# 创建ENVI格式驱动
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(output_path, im_width, im_height, 1, gdal.GDT_Float32)
if dataset is not None:
dataset.SetGeoTransform(im_geotrans) # 设置地理变换参数
dataset.SetProjection(im_proj) # 设置投影
dataset.GetRasterBand(1).WriteArray(im_data)
dataset.FlushCache() # 确保数据写入磁盘
dataset = None # 关闭文件
def Strech_linear(im_data):
im_data_dB=10*np.log10(im_data)
immask=np.isfinite(im_data_dB)
infmask = np.isinf(im_data_dB)
imvail_data=im_data[immask]
im_data_dB=0
minvalue=np.nanmin(imvail_data)
maxvalue=np.nanmax(imvail_data)
infmask = np.isinf(im_data_dB)
im_data[infmask] = minvalue-100
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254+1
im_data=np.clip(im_data,0,255)
return im_data.astype(np.uint8)
def Strech_linear1(im_data):
im_data_dB = 10 * np.log10(im_data)
immask = np.isfinite(im_data_dB)
infmask = np.isinf(im_data_dB)
imvail_data = im_data[immask]
im_data_dB=0
minvalue=np.percentile(imvail_data,1)
maxvalue = np.percentile(imvail_data, 99)
im_data[infmask] = minvalue - 100
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254 + 1
im_data = np.clip(im_data, 0, 255)
return im_data.astype(np.uint8)
def Strech_linear2(im_data):
im_data_dB = 10 * np.log10(im_data)
immask = np.isfinite(im_data_dB)
infmask = np.isinf(im_data_dB)
imvail_data = im_data[immask]
im_data_dB = 0
minvalue = np.percentile(imvail_data, 2)
maxvalue = np.percentile(imvail_data, 98)
im_data[infmask] = minvalue - 100
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254 + 1
im_data = np.clip(im_data, 0, 255)
return im_data.astype(np.uint8)
def Strech_linear5(im_data):
im_data_dB = 10 * np.log10(im_data)
immask = np.isfinite(im_data_dB)
infmask = np.isinf(im_data_dB)
imvail_data = im_data[immask]
im_data_dB = 0
minvalue = np.percentile(imvail_data, 5)
maxvalue = np.percentile(imvail_data, 95)
im_data[infmask] = minvalue - 100
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254 + 1
im_data = np.clip(im_data, 0, 255)
return im_data.astype(np.uint8)
def Strech_SquareRoot(im_data):
# 判断是否为dB
# immask = np.isfinite(im_data)
# imvail_data = im_data[immask]
# minvalue = np.percentile(imvail_data,30)
# if minvalue<0 :
# im_data=np.power(10.0,im_data/10.0)
im_data=np.sqrt(im_data)
immask = np.isfinite(im_data)
imvail_data = im_data[immask]
minvalue=np.nanmin(imvail_data)
maxvalue=np.nanmax(imvail_data)
minvalue_01Prec = np.percentile(imvail_data, 2) # 20250904 1%拉伸
maxvalue_999Prec = np.percentile(imvail_data, 98)
print('sqrt root min - max ', minvalue,maxvalue)
if (maxvalue-minvalue)/(maxvalue_999Prec-minvalue_01Prec)>3: # 表示 拉伸之后,像素值绝大部分很有可能集中在 80
minvalue=minvalue_01Prec
maxvalue=maxvalue_999Prec
print('sqrt root min(0.1) - max(99.9) ', minvalue, maxvalue)
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254 + 1
im_data = np.clip(im_data, 0, 255)
return im_data.astype(np.uint8)
def DataStrech(im_data,strechmethod):
# [,"Linear1","Linear2","Linear5","SquareRoot"]
if strechmethod == "Linear" :
return Strech_linear(im_data)
elif strechmethod == "Linear1":
return Strech_linear1(im_data)
elif strechmethod == "Linear2":
return Strech_linear2(im_data)
elif strechmethod == "Linear5":
return Strech_linear5(im_data)
elif strechmethod == "SquareRoot":
return Strech_SquareRoot(im_data)
else:
return im_data.astype(np.uint8)
# 文件模式
def stretchProcess(infilepath,outfilepath,strechmethod):
im_proj, im_Geotrans, im_data=read_tif(infilepath)
envifilepath=get_filename_without_ext(outfilepath)+".bin"
envifilepath=os.path.join(os.path.dirname(outfilepath),envifilepath)
im_data = DataStrech(im_data,strechmethod)
im_data = im_data.astype(np.uint8)
write_envi(im_data,im_Geotrans,im_proj,envifilepath)
Image.fromarray(im_data).save(outfilepath,compress_level=0)
print("图像拉伸处理结束")
#切片模式
def getSlicePoints(h):
n = int(math.floor((h - 1024) * 1.2 / sliceSize))
step=int(math.ceil((h-1024)/n))
ti=list(range(0,h-1024,step))
ti.append(h-1024)
# 评价重叠率
movelayer=[]
for i in range(len(ti)-1):
movelayer.append((ti[i] + 1024 - ti[i + 1]) / 1024 * 100.0)
print("重叠率:",movelayer)
return ti
def getsliceGeotrans(GeoTransform,Xpixel,Ypixel):
XGeo = GeoTransform[0]+GeoTransform[1]*Xpixel+GeoTransform[2]*Ypixel
YGeo = GeoTransform[3]+GeoTransform[4]*Xpixel+GeoTransform[5]*Ypixel
result=[
XGeo,GeoTransform[1],GeoTransform[2],
YGeo,GeoTransform[4],GeoTransform[5]
]
return result
def is_all_same(lst):
arr = np.array(lst)
# arr_num=arr.size
sum_data=np.sum(arr != arr[0])
return sum_data<400
def getNextSliceNumber(n,sliceSize,overlap=0.25):
step=int(sliceSize*(1-overlap))+1
ti = list(range(0, n, step))
newN= n if ti[-1]+1024 < n else ti[-1]+1024
# 评价重叠率
movelayer=[]
for i in range(len(ti)-1):
movelayer.append((ti[i] + 1024 - ti[i + 1]) / 1024 * 100.0)
print("重叠率:",movelayer)
return newN,ti
def sliceDataset(rootname,im_data,src_im_data, im_Geotrans, im_proj, outfolder):
binfolder=os.path.join(outfolder,"unit8binfolder")
pngfolder=os.path.join(outfolder,"pngfolder")
tifffolder=os.path.join(outfolder,"tifffolder")
h,w=im_data.shape
nextH,ht=getNextSliceNumber(h,sliceSize,BlockOverLayer)
nextW,wt=getNextSliceNumber(w,sliceSize,BlockOverLayer)
padH=nextH-h
padW=nextW-w
im_data=np.pad(im_data,((0,padH),(0,padW)),mode='constant',constant_values=0)
src_im_data=np.pad(src_im_data,((0,padH),(0,padW)),mode='constant',constant_values=0)
slice_ID=0
for hi in ht:
for wi in wt:
geotrans_temp=getsliceGeotrans(im_Geotrans,wi,hi)
im_data_temp=im_data[hi:hi+1024,wi:wi+1024]
src_im_data_temp=src_im_data[hi:hi+1024,wi:wi+1024]
slice_ID = slice_ID + 1
if not is_all_same(im_data_temp):
sliceBinPath=os.path.join(binfolder, rootname+"_"+str(slice_ID).zfill(4)+"_image.tiff")
slicepngPath=os.path.join(pngfolder, rootname+"_"+str(slice_ID).zfill(4)+"_image.png")
slicesrctiffPath=os.path.join(tifffolder, rootname+"_"+str(slice_ID).zfill(4)+"_image.tiff")
write_tiff(src_im_data_temp, geotrans_temp, im_proj, slicesrctiffPath)
write_envi(im_data_temp,geotrans_temp,im_proj,sliceBinPath)
Image.fromarray(im_data_temp).save(slicepngPath,compress_level=0)
print("图像切片结束")
def stretchSliceProcess(infilepath, outfolder, strechmethod):
binfolder=os.path.join(outfolder,"unit8binfolder")
pngfolder=os.path.join(outfolder,"pngfolder")
tifffolder=os.path.join(outfolder,"tifffolder")
allpngfolder = os.path.join(outfolder, "allpngfolder")
if not os.path.exists(binfolder):
os.makedirs(binfolder)
if not os.path.exists(pngfolder):
os.makedirs(pngfolder)
if not os.path.exists(tifffolder):
os.makedirs(tifffolder)
if not os.path.exists(allpngfolder):
os.makedirs(allpngfolder)
im_proj, im_Geotrans, im_data=read_tif(infilepath)
src_im_data=im_data*1.0
im_data = DataStrech(im_data,strechmethod) # 拉伸
im_data = im_data.astype(np.uint8)
rootname=Path(infilepath).stem
allImagePath=os.path.join(allpngfolder, rootname+"_all.png")
Image.fromarray(im_data).save(allImagePath,compress_level=0)
sliceDataset(rootname,im_data, src_im_data,im_Geotrans, im_proj, outfolder)
print("图像切片与拉伸完成")
pass
def getParams():
parser = argparse.ArgumentParser()
parser.add_argument('-i','--infile',type=str,default=r"F:\天仪SAR卫星数据集\舰船数据\bc2-sp-org-vv-20250205t032055-021998-000036-0055ee-01.tiff", help='输入shapefile文件')
# parser.add_argument('-o', '--outfile',type=str,default=r"F:\天仪SAR卫星数据集\舰船数据\bc2-sp-org-vv-20250205t032055-021998-000036-0055ee-01.png", help='输出geojson文件')
parser.add_argument('-o', '--outfile',type=str,default=r"F:\天仪SAR卫星数据集\舰船数据\切片结果", help='输出geojson文件')
group = parser.add_mutually_exclusive_group()
group.add_argument(
'--filemode',
action='store_const',
const='filemode',
dest='mode',
help='文件模式'
)
group.add_argument(
'--slicemode',
action='store_const',
const='slicemode',
dest='mode',
help='切片模式'
)
parser.set_defaults(mode='slicemode')
group = parser.add_mutually_exclusive_group()
group.add_argument(
'--Linear',
action='store_const',
const='Linear',
dest='method',
help='线性拉伸'
)
group.add_argument(
'--Linear1prec',
action='store_const',
const='Linear1',
dest='method',
help='1%线性拉伸'
)
group.add_argument(
'--Linear2prec',
action='store_const',
const='Linear2',
dest='method',
help='2%线性拉伸'
)
group.add_argument(
'--Linear5prec',
action='store_const',
const='Linear5',
dest='method',
help='5%线性拉伸'
)
group.add_argument(
'--SquareRoot',
action='store_const',
const='SquareRoot',
dest='method',
help='平方根拉伸'
)
parser.set_defaults(method='SquareRoot')
args = parser.parse_args()
return args
if __name__ == '__main__':
try:
parser = getParams()
intiffPath=parser.infile
modestr=parser.mode
methodstr = parser.method
if modestr == "filemode":
outbinPath = parser.outfile
print('infile=', intiffPath)
print('outfile=', outbinPath)
print('method=', methodstr)
stretchProcess(intiffPath, outbinPath, methodstr)
elif modestr == "slicemode":
outfolder = parser.outfile
print('infile=', intiffPath)
print('outfolder=', outfolder)
print('method=', methodstr)
stretchSliceProcess(intiffPath, outfolder, methodstr)
pass
else:
print("模式错误")
exit(2)
except Exception as e:
print(e)
exit(3)

View File

@ -22,10 +22,10 @@ import shutil
"""
MLCName="MLC"
JLCName="JLC"
MJLCName="MJLC"
NOLCName="NOLC"
MLCName="MLC" # M
JLCName="JLC" # J
MJLCName="MJLC" # JM 混合
NOLCName="NOLC" # 没有港口
def find_tif_files_pathlib(directory):
path = Path(directory)
@ -178,8 +178,8 @@ def getMJSignal(tiffpath,shipPortTree):
# final_points 就是你要的矩形范围内的点
# 如果你需要的是这些点在原始数据中的索引,而不是坐标本身:
final_indices = np.array(potential_indices)[within_rect_indices_mask]
MLCFlag=True
if final_points.shape[0]>0:
MLCFlag=True
if JLCName in shipPortTree and not shipPortTree[JLCName] is None:
# 3. 使用 query_ball_point 查找以中心点为圆心radius_to_corner 为半径的圆内的所有点的索引
potential_indices = shipPortTree[JLCName].query_ball_point(center_point, r=radius_to_corner)
@ -200,7 +200,8 @@ def getMJSignal(tiffpath,shipPortTree):
# final_points 就是你要的矩形范围内的点
# 如果你需要的是这些点在原始数据中的索引,而不是坐标本身:
final_indices = np.array(potential_indices)[within_rect_indices_mask]
JLCFlag=True
if final_points.shape[0]>0:
JLCFlag=True
# 处理软件
return MLCFlag,JLCFlag
@ -221,7 +222,7 @@ def getTiffInPort(shipPortTree,srcFolderPath_0img,outTiffInfoFilePath):
if MLCFlag and JLCFlag:
tiffLCPort[MJLCName].append(tiffpath)
elif MLCFlag:
tiffLCPort[MJLCName].append(tiffpath)
tiffLCPort[MLCName].append(tiffpath)
elif JLCFlag:
tiffLCPort[JLCName].append(tiffpath)
else:
@ -231,7 +232,7 @@ def getTiffInPort(shipPortTree,srcFolderPath_0img,outTiffInfoFilePath):
with open(outTiffInfoFilePath,'w',encoding="utf-8") as f:
for k in tiffLCPort:
for tiffpath in tiffLCPort[k]:
f.write("{} {}\n".format(k,tiffpath))
f.write("{}\t\t{}\n".format(k,tiffpath))
def SpliteProcess(srcfolderpath,outfolderpath,MLCPath,JLCPath,JMLCPath):
@ -250,6 +251,7 @@ def SpliteProcess(srcfolderpath,outfolderpath,MLCPath,JLCPath,JMLCPath):
}
srcFolderPath_0img=os.path.join(srcfolderpath,"0-原图") # 0-原图 文件路径
outTiffInfoFilePath=os.path.join(outfolderpath,"JMPort.txt")
getTiffInPort(shipPortTree, srcFolderPath_0img, outTiffInfoFilePath)
return True
pass
@ -257,7 +259,7 @@ def SpliteProcess(srcfolderpath,outfolderpath,MLCPath,JLCPath,JMLCPath):
def getParams():
parser = argparse.ArgumentParser()
parser.add_argument('-s','--srcfolder',type=str,default=r'R:\TYSAR-德清院\TYSAR-条带模式(SM)\港口\20250903-不分类', help='输入shapefile文件')
parser.add_argument('-o', '--outfolder',type=str,default=r'D:\TYSAR-德清院\TYSAR-条带模式(SM)\港口\20250903-不分类', help='输出geojson文件')
parser.add_argument('-o', '--outfolder',type=str,default=r'D:\TYSAR-德清院\TYSAR-条带模式(SM)\港口\20250903-不分类\A-预处理', help='输出geojson文件')
parser.add_argument('-m', '--mLC',type=str,help=r'MLC', default=r'D:\TYSAR-德清院\目标点位信息更新\0828目标点位\港口(民船).shp')
parser.add_argument('-j', '--jLC',type=str,help=r'JLC' ,default=r'D:\TYSAR-德清院\目标点位信息更新\0828目标点位\军港.shp')
parser.add_argument('-jm', '--jmLC',type=str,help=r'MJLC', default=r'D:\TYSAR-德清院\目标点位信息更新\0828目标点位\军民一体港口.shp')

View File

@ -0,0 +1,407 @@
"""
2025.09.16 切片增加后缀 _image.png _image.tiff
2025.09.22 增加港口切片要求
"""
from osgeo import ogr, gdal
import os
import argparse
import numpy as np
from PIL import Image
import math
from pathlib import Path
sliceSize=1024
BlockOverLayer=0.25
def get_filename_without_ext(path):
base_name = os.path.basename(path)
if '.' not in base_name or base_name.startswith('.'):
return base_name
return base_name.rsplit('.', 1)[0]
def read_tif(path):
dataset = gdal.Open(path) # 打开TIF文件
if dataset is None:
print("无法打开文件")
return None, None, None
cols = dataset.RasterXSize # 图像宽度
rows = dataset.RasterYSize # 图像高度
bands = dataset.RasterCount
im_proj = dataset.GetProjection() # 获取投影信息
im_Geotrans = dataset.GetGeoTransform() # 获取仿射变换信息
im_data = dataset.ReadAsArray(0, 0, cols, rows) # 读取栅格数据为NumPy数组
print("行数:", rows)
print("列数:", cols)
print("波段:", bands)
del dataset # 关闭数据集
return im_proj, im_Geotrans, im_data
def write_envi(im_data, im_geotrans, im_proj, output_path):
"""
将数组数据写入ENVI格式文件
:param im_data: 输入的numpy数组2D或3D
:param im_geotrans: 仿射变换参数6元组
:param im_proj: 投影信息WKT字符串
:param output_path: 输出文件路径无需扩展名会自动生成.dat和.hdr
"""
im_bands = 1
im_height, im_width = im_data.shape
# 创建ENVI格式驱动
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(output_path, im_width, im_height, 1, gdal.GDT_Byte)
if dataset is not None:
dataset.SetGeoTransform(im_geotrans) # 设置地理变换参数
dataset.SetProjection(im_proj) # 设置投影
dataset.GetRasterBand(1).WriteArray(im_data)
dataset.FlushCache() # 确保数据写入磁盘
dataset = None # 关闭文件
def write_tiff(im_data, im_geotrans, im_proj, output_path):
"""
将数组数据写入ENVI格式文件
:param im_data: 输入的numpy数组2D或3D
:param im_geotrans: 仿射变换参数6元组
:param im_proj: 投影信息WKT字符串
:param output_path: 输出文件路径无需扩展名会自动生成.dat和.hdr
"""
im_bands = 1
im_height, im_width = im_data.shape
# 创建ENVI格式驱动
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(output_path, im_width, im_height, 1, gdal.GDT_Float32)
if dataset is not None:
dataset.SetGeoTransform(im_geotrans) # 设置地理变换参数
dataset.SetProjection(im_proj) # 设置投影
dataset.GetRasterBand(1).WriteArray(im_data)
dataset.FlushCache() # 确保数据写入磁盘
dataset = None # 关闭文件
def Strech_linear(im_data):
im_data_dB=10*np.log10(im_data)
immask=np.isfinite(im_data_dB)
infmask = np.isinf(im_data_dB)
imvail_data=im_data[immask]
im_data_dB=0
minvalue=np.nanmin(imvail_data)
maxvalue=np.nanmax(imvail_data)
infmask = np.isinf(im_data_dB)
im_data[infmask] = minvalue-100
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254+1
im_data=np.clip(im_data,0,255)
return im_data.astype(np.uint8)
def Strech_linear1(im_data):
im_data_dB = 10 * np.log10(im_data)
immask = np.isfinite(im_data_dB)
infmask = np.isinf(im_data_dB)
imvail_data = im_data[immask]
im_data_dB=0
minvalue=np.percentile(imvail_data,1)
maxvalue = np.percentile(imvail_data, 99)
im_data[infmask] = minvalue - 100
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254 + 1
im_data = np.clip(im_data, 0, 255)
return im_data.astype(np.uint8)
def Strech_linear2(im_data):
im_data_dB = 10 * np.log10(im_data)
immask = np.isfinite(im_data_dB)
infmask = np.isinf(im_data_dB)
imvail_data = im_data[immask]
im_data_dB = 0
minvalue = np.percentile(imvail_data, 2)
maxvalue = np.percentile(imvail_data, 98)
im_data[infmask] = minvalue - 100
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254 + 1
im_data = np.clip(im_data, 0, 255)
return im_data.astype(np.uint8)
def Strech_linear5(im_data):
im_data_dB = 10 * np.log10(im_data)
immask = np.isfinite(im_data_dB)
infmask = np.isinf(im_data_dB)
imvail_data = im_data[immask]
im_data_dB = 0
minvalue = np.percentile(imvail_data, 5)
maxvalue = np.percentile(imvail_data, 95)
im_data[infmask] = minvalue - 100
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254 + 1
im_data = np.clip(im_data, 0, 255)
return im_data.astype(np.uint8)
def Strech_SquareRoot(im_data):
# 判断是否为dB
# immask = np.isfinite(im_data)
# imvail_data = im_data[immask]
# minvalue = np.percentile(imvail_data,30)
# if minvalue<0 :
# im_data=np.power(10.0,im_data/10.0)
im_data=np.sqrt(im_data)
immask = np.isfinite(im_data)
imvail_data = im_data[immask]
minvalue=np.nanmin(imvail_data)
maxvalue=np.nanmax(imvail_data)
minvalue_01Prec = np.percentile(imvail_data, 2) # 20250904 1%拉伸
maxvalue_999Prec = np.percentile(imvail_data, 98)
print('sqrt root min - max ', minvalue,maxvalue)
if (maxvalue-minvalue)/(maxvalue_999Prec-minvalue_01Prec)>3: # 表示 拉伸之后,像素值绝大部分很有可能集中在 80
minvalue=minvalue_01Prec
maxvalue=maxvalue_999Prec
print('sqrt root min(0.1) - max(99.9) ', minvalue, maxvalue)
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254 + 1
im_data = np.clip(im_data, 0, 255)
return im_data.astype(np.uint8)
def DataStrech(im_data,strechmethod):
# [,"Linear1","Linear2","Linear5","SquareRoot"]
if strechmethod == "Linear" :
return Strech_linear(im_data)
elif strechmethod == "Linear1":
return Strech_linear1(im_data)
elif strechmethod == "Linear2":
return Strech_linear2(im_data)
elif strechmethod == "Linear5":
return Strech_linear5(im_data)
elif strechmethod == "SquareRoot":
return Strech_SquareRoot(im_data)
else:
return im_data.astype(np.uint8)
# 文件模式
def stretchProcess(infilepath,outfilepath,strechmethod):
im_proj, im_Geotrans, im_data=read_tif(infilepath)
envifilepath=get_filename_without_ext(outfilepath)+".bin"
envifilepath=os.path.join(os.path.dirname(outfilepath),envifilepath)
im_data = DataStrech(im_data,strechmethod)
im_data = im_data.astype(np.uint8)
write_envi(im_data,im_Geotrans,im_proj,envifilepath)
Image.fromarray(im_data).save(outfilepath,compress_level=0)
print("图像拉伸处理结束")
#切片模式
def getSlicePoints(h):
n = int(math.floor((h - 1024) * 1.2 / sliceSize))
step=int(math.ceil((h-1024)/n))
ti=list(range(0,h-1024,step))
ti.append(h-1024)
# 评价重叠率
movelayer=[]
for i in range(len(ti)-1):
movelayer.append((ti[i] + 1024 - ti[i + 1]) / 1024 * 100.0)
print("重叠率:",movelayer)
return ti
def getsliceGeotrans(GeoTransform,Xpixel,Ypixel):
XGeo = GeoTransform[0]+GeoTransform[1]*Xpixel+GeoTransform[2]*Ypixel
YGeo = GeoTransform[3]+GeoTransform[4]*Xpixel+GeoTransform[5]*Ypixel
result=[
XGeo,GeoTransform[1],GeoTransform[2],
YGeo,GeoTransform[4],GeoTransform[5]
]
return result
def is_all_same(lst):
arr = np.array(lst)
# arr_num=arr.size
sum_data=np.sum(arr != arr[0])
return sum_data<400
def getNextSliceNumber(n,sliceSize,overlap=0.25):
step=int(sliceSize*(1-overlap))+1
ti = list(range(0, n, step))
newN= n if ti[-1]+1024 < n else ti[-1]+1024
# 评价重叠率
movelayer=[]
for i in range(len(ti)-1):
movelayer.append((ti[i] + 1024 - ti[i + 1]) / 1024 * 100.0)
print("重叠率:",movelayer)
return newN,ti
def sliceDataset(rootname,im_data,src_im_data, im_Geotrans, im_proj, outfolder):
binfolder=os.path.join(outfolder,"unit8binfolder")
pngfolder=os.path.join(outfolder,"pngfolder")
tifffolder=os.path.join(outfolder,"tifffolder")
h,w=im_data.shape
nextH,ht=getNextSliceNumber(h,sliceSize,BlockOverLayer)
nextW,wt=getNextSliceNumber(w,sliceSize,BlockOverLayer)
padH=nextH-h
padW=nextW-w
im_data=np.pad(im_data,((0,padH),(0,padW)),mode='constant',constant_values=0)
src_im_data=np.pad(src_im_data,((0,padH),(0,padW)),mode='constant',constant_values=0)
slice_ID=0
for hi in ht:
for wi in wt:
geotrans_temp=getsliceGeotrans(im_Geotrans,wi,hi)
im_data_temp=im_data[hi:hi+1024,wi:wi+1024]
src_im_data_temp=src_im_data[hi:hi+1024,wi:wi+1024]
slice_ID = slice_ID + 1
if not is_all_same(im_data_temp):
sliceBinPath=os.path.join(binfolder, rootname+"_"+str(slice_ID).zfill(4)+"_image.tiff")
slicepngPath=os.path.join(pngfolder, rootname+"_"+str(slice_ID).zfill(4)+"_image.png")
slicesrctiffPath=os.path.join(tifffolder, rootname+"_"+str(slice_ID).zfill(4)+"_image.tiff")
write_tiff(src_im_data_temp, geotrans_temp, im_proj, slicesrctiffPath)
write_envi(im_data_temp,geotrans_temp,im_proj,sliceBinPath)
Image.fromarray(im_data_temp).save(slicepngPath,compress_level=0)
print("图像切片结束")
def stretchSliceProcess(infilepath, outfolder, strechmethod):
binfolder=os.path.join(outfolder,"unit8binfolder")
pngfolder=os.path.join(outfolder,"pngfolder")
tifffolder=os.path.join(outfolder,"tifffolder")
allpngfolder = os.path.join(outfolder, "allpngfolder")
if not os.path.exists(binfolder):
os.makedirs(binfolder)
if not os.path.exists(pngfolder):
os.makedirs(pngfolder)
if not os.path.exists(tifffolder):
os.makedirs(tifffolder)
if not os.path.exists(allpngfolder):
os.makedirs(allpngfolder)
im_proj, im_Geotrans, im_data=read_tif(infilepath)
src_im_data=im_data*1.0
im_data = DataStrech(im_data,strechmethod) # 拉伸
im_data = im_data.astype(np.uint8)
rootname=Path(infilepath).stem
allImagePath=os.path.join(allpngfolder, rootname+"_all.png")
Image.fromarray(im_data).save(allImagePath,compress_level=0)
sliceDataset(rootname,im_data, src_im_data,im_Geotrans, im_proj, outfolder)
print("图像切片与拉伸完成")
pass
def getParams():
parser = argparse.ArgumentParser()
parser.add_argument('-i','--infile',type=str,default=r"F:\天仪SAR卫星数据集\舰船数据\bc2-sp-org-vv-20250205t032055-021998-000036-0055ee-01.tiff", help='输入shapefile文件')
# parser.add_argument('-o', '--outfile',type=str,default=r"F:\天仪SAR卫星数据集\舰船数据\bc2-sp-org-vv-20250205t032055-021998-000036-0055ee-01.png", help='输出geojson文件')
parser.add_argument('-o', '--outfile',type=str,default=r"F:\天仪SAR卫星数据集\舰船数据\切片结果", help='输出geojson文件')
group = parser.add_mutually_exclusive_group()
group.add_argument(
'--filemode',
action='store_const',
const='filemode',
dest='mode',
help='文件模式'
)
group.add_argument(
'--slicemode',
action='store_const',
const='slicemode',
dest='mode',
help='切片模式'
)
parser.set_defaults(mode='slicemode')
group = parser.add_mutually_exclusive_group()
group.add_argument(
'--Linear',
action='store_const',
const='Linear',
dest='method',
help='线性拉伸'
)
group.add_argument(
'--Linear1prec',
action='store_const',
const='Linear1',
dest='method',
help='1%线性拉伸'
)
group.add_argument(
'--Linear2prec',
action='store_const',
const='Linear2',
dest='method',
help='2%线性拉伸'
)
group.add_argument(
'--Linear5prec',
action='store_const',
const='Linear5',
dest='method',
help='5%线性拉伸'
)
group.add_argument(
'--SquareRoot',
action='store_const',
const='SquareRoot',
dest='method',
help='平方根拉伸'
)
parser.set_defaults(method='SquareRoot')
args = parser.parse_args()
return args
if __name__ == '__main__':
try:
parser = getParams()
intiffPath=parser.infile
modestr=parser.mode
methodstr = parser.method
if modestr == "filemode":
outbinPath = parser.outfile
print('infile=', intiffPath)
print('outfile=', outbinPath)
print('method=', methodstr)
stretchProcess(intiffPath, outbinPath, methodstr)
elif modestr == "slicemode":
outfolder = parser.outfile
print('infile=', intiffPath)
print('outfolder=', outfolder)
print('method=', methodstr)
stretchSliceProcess(intiffPath, outfolder, methodstr)
pass
else:
print("模式错误")
exit(2)
except Exception as e:
print(e)
exit(3)