SpacetySliceTools/generatorRasterSlicesTools/SpacetyTIFFDataStretch2PNG_...

622 lines
22 KiB
Python
Raw Normal View History

2025-09-22 07:54:22 +00:00
"""
2025.09.16 切片增加后缀 _image.png _image.tiff
2025.09.22 增加港口切片要求
"""
from osgeo import ogr, gdal
import os
import argparse
import numpy as np
from PIL import Image
import math
from pathlib import Path
2025-09-22 09:14:55 +00:00
portsliceSize=5000
shipsliceSize=1024
2025-09-22 07:54:22 +00:00
BlockOverLayer=0.25
2025-09-22 09:18:26 +00:00
def existOrCreate(dirpath):
if not os.path.exists(dirpath):
os.makedirs(dirpath)
2025-09-22 07:54:22 +00:00
def get_filename_without_ext(path):
base_name = os.path.basename(path)
if '.' not in base_name or base_name.startswith('.'):
return base_name
return base_name.rsplit('.', 1)[0]
def read_tif(path):
dataset = gdal.Open(path) # 打开TIF文件
if dataset is None:
print("无法打开文件")
return None, None, None
cols = dataset.RasterXSize # 图像宽度
rows = dataset.RasterYSize # 图像高度
bands = dataset.RasterCount
im_proj = dataset.GetProjection() # 获取投影信息
im_Geotrans = dataset.GetGeoTransform() # 获取仿射变换信息
im_data = dataset.ReadAsArray(0, 0, cols, rows) # 读取栅格数据为NumPy数组
print("行数:", rows)
print("列数:", cols)
print("波段:", bands)
del dataset # 关闭数据集
return im_proj, im_Geotrans, im_data
def write_envi(im_data, im_geotrans, im_proj, output_path):
"""
将数组数据写入ENVI格式文件
:param im_data: 输入的numpy数组2D或3D
:param im_geotrans: 仿射变换参数6元组
:param im_proj: 投影信息WKT字符串
:param output_path: 输出文件路径无需扩展名会自动生成.dat和.hdr
"""
im_bands = 1
im_height, im_width = im_data.shape
# 创建ENVI格式驱动
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(output_path, im_width, im_height, 1, gdal.GDT_Byte)
if dataset is not None:
dataset.SetGeoTransform(im_geotrans) # 设置地理变换参数
dataset.SetProjection(im_proj) # 设置投影
dataset.GetRasterBand(1).WriteArray(im_data)
dataset.FlushCache() # 确保数据写入磁盘
dataset = None # 关闭文件
2025-10-10 12:30:37 +00:00
def write_allExtend(im_data, im_geotrans, im_proj, output_path):
"""
将数组数据写入ENVI格式文件
:param im_data: 输入的numpy数组2D或3D
:param im_geotrans: 仿射变换参数6元组
:param im_proj: 投影信息WKT字符串
:param output_path: 输出文件路径无需扩展名会自动生成.dat和.hdr
"""
im_bands = 1
im_height, im_width = im_data.shape
create_options=[
"COMPRESS=DEFLATE",
"PREDICTOR=2",
"ZLEVEL=6",
"TILED=YES",
]
# 创建ENVI格式驱动
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(output_path, im_width, im_height, 1, gdal.GDT_Byte,options=create_options)
if dataset is not None:
dataset.SetGeoTransform(im_geotrans) # 设置地理变换参数
dataset.SetProjection(im_proj) # 设置投影
dataset.GetRasterBand(1).WriteArray(im_data)
dataset.FlushCache() # 确保数据写入磁盘
dataset = None # 关闭文件
2025-09-22 07:54:22 +00:00
def write_tiff(im_data, im_geotrans, im_proj, output_path):
"""
将数组数据写入ENVI格式文件
:param im_data: 输入的numpy数组2D或3D
:param im_geotrans: 仿射变换参数6元组
:param im_proj: 投影信息WKT字符串
:param output_path: 输出文件路径无需扩展名会自动生成.dat和.hdr
"""
im_bands = 1
im_height, im_width = im_data.shape
# 创建ENVI格式驱动
driver = gdal.GetDriverByName("GTiff")
dataset = driver.Create(output_path, im_width, im_height, 1, gdal.GDT_Float32)
if dataset is not None:
dataset.SetGeoTransform(im_geotrans) # 设置地理变换参数
dataset.SetProjection(im_proj) # 设置投影
dataset.GetRasterBand(1).WriteArray(im_data)
dataset.FlushCache() # 确保数据写入磁盘
dataset = None # 关闭文件
def Strech_linear(im_data):
im_data_dB=10*np.log10(im_data)
immask=np.isfinite(im_data_dB)
infmask = np.isinf(im_data_dB)
imvail_data=im_data[immask]
im_data_dB=0
minvalue=np.nanmin(imvail_data)
maxvalue=np.nanmax(imvail_data)
infmask = np.isinf(im_data_dB)
im_data[infmask] = minvalue-100
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254+1
im_data=np.clip(im_data,0,255)
return im_data.astype(np.uint8)
def Strech_linear1(im_data):
im_data_dB = 10 * np.log10(im_data)
immask = np.isfinite(im_data_dB)
infmask = np.isinf(im_data_dB)
imvail_data = im_data[immask]
im_data_dB=0
minvalue=np.percentile(imvail_data,1)
maxvalue = np.percentile(imvail_data, 99)
im_data[infmask] = minvalue - 100
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254 + 1
im_data = np.clip(im_data, 0, 255)
return im_data.astype(np.uint8)
def Strech_linear2(im_data):
im_data_dB = 10 * np.log10(im_data)
immask = np.isfinite(im_data_dB)
infmask = np.isinf(im_data_dB)
imvail_data = im_data[immask]
im_data_dB = 0
minvalue = np.percentile(imvail_data, 2)
maxvalue = np.percentile(imvail_data, 98)
im_data[infmask] = minvalue - 100
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254 + 1
im_data = np.clip(im_data, 0, 255)
return im_data.astype(np.uint8)
def Strech_linear5(im_data):
im_data_dB = 10 * np.log10(im_data)
immask = np.isfinite(im_data_dB)
infmask = np.isinf(im_data_dB)
imvail_data = im_data[immask]
im_data_dB = 0
minvalue = np.percentile(imvail_data, 5)
maxvalue = np.percentile(imvail_data, 95)
im_data[infmask] = minvalue - 100
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254 + 1
im_data = np.clip(im_data, 0, 255)
return im_data.astype(np.uint8)
def Strech_SquareRoot(im_data):
# 判断是否为dB
# immask = np.isfinite(im_data)
# imvail_data = im_data[immask]
# minvalue = np.percentile(imvail_data,30)
# if minvalue<0 :
# im_data=np.power(10.0,im_data/10.0)
im_data=np.sqrt(im_data)
immask = np.isfinite(im_data)
imvail_data = im_data[immask]
minvalue=np.nanmin(imvail_data)
maxvalue=np.nanmax(imvail_data)
minvalue_01Prec = np.percentile(imvail_data, 2) # 20250904 1%拉伸
maxvalue_999Prec = np.percentile(imvail_data, 98)
print('sqrt root min - max ', minvalue,maxvalue)
if (maxvalue-minvalue)/(maxvalue_999Prec-minvalue_01Prec)>3: # 表示 拉伸之后,像素值绝大部分很有可能集中在 80
minvalue=minvalue_01Prec
maxvalue=maxvalue_999Prec
print('sqrt root min(0.1) - max(99.9) ', minvalue, maxvalue)
im_data = (im_data - minvalue) / (maxvalue - minvalue) * 254 + 1
im_data = np.clip(im_data, 0, 255)
return im_data.astype(np.uint8)
def DataStrech(im_data,strechmethod):
# [,"Linear1","Linear2","Linear5","SquareRoot"]
if strechmethod == "Linear" :
return Strech_linear(im_data)
elif strechmethod == "Linear1":
return Strech_linear1(im_data)
elif strechmethod == "Linear2":
return Strech_linear2(im_data)
elif strechmethod == "Linear5":
return Strech_linear5(im_data)
elif strechmethod == "SquareRoot":
return Strech_SquareRoot(im_data)
else:
return im_data.astype(np.uint8)
# 文件模式
def stretchProcess(infilepath,outfilepath,strechmethod):
im_proj, im_Geotrans, im_data=read_tif(infilepath)
envifilepath=get_filename_without_ext(outfilepath)+".bin"
envifilepath=os.path.join(os.path.dirname(outfilepath),envifilepath)
im_data = DataStrech(im_data,strechmethod)
im_data = im_data.astype(np.uint8)
write_envi(im_data,im_Geotrans,im_proj,envifilepath)
Image.fromarray(im_data).save(outfilepath,compress_level=0)
print("图像拉伸处理结束")
def getsliceGeotrans(GeoTransform,Xpixel,Ypixel):
XGeo = GeoTransform[0]+GeoTransform[1]*Xpixel+GeoTransform[2]*Ypixel
YGeo = GeoTransform[3]+GeoTransform[4]*Xpixel+GeoTransform[5]*Ypixel
result=[
XGeo,GeoTransform[1],GeoTransform[2],
YGeo,GeoTransform[4],GeoTransform[5]
]
return result
def is_all_same(lst):
arr = np.array(lst)
# arr_num=arr.size
sum_data=np.sum(arr != arr[0])
return sum_data<400
def getNextSliceNumber(n,sliceSize,overlap=0.25):
step=int(sliceSize*(1-overlap))+1
ti = list(range(0, n, step))
newN= n if ti[-1]+1024 < n else ti[-1]+1024
# 评价重叠率
movelayer=[]
for i in range(len(ti)-1):
movelayer.append((ti[i] + 1024 - ti[i + 1]) / 1024 * 100.0)
print("重叠率:",movelayer)
return newN,ti
2025-09-22 09:14:55 +00:00
def sliceShipDataset(rootname,im_data,src_im_data, im_Geotrans, im_proj, outfolder):
2025-09-22 09:18:26 +00:00
binfolder=os.path.join(outfolder,"舰船","unit8binfolder")
pngfolder=os.path.join(outfolder,"舰船","pngfolder")
tifffolder=os.path.join(outfolder,"舰船","tifffolder")
2025-09-22 07:54:22 +00:00
h,w=im_data.shape
2025-09-22 09:14:55 +00:00
nextH,ht=getNextSliceNumber(h,shipsliceSize,BlockOverLayer)
nextW,wt=getNextSliceNumber(w,shipsliceSize,BlockOverLayer)
2025-09-22 07:54:22 +00:00
padH=nextH-h
padW=nextW-w
im_data=np.pad(im_data,((0,padH),(0,padW)),mode='constant',constant_values=0)
src_im_data=np.pad(src_im_data,((0,padH),(0,padW)),mode='constant',constant_values=0)
slice_ID=0
for hi in ht:
for wi in wt:
geotrans_temp=getsliceGeotrans(im_Geotrans,wi,hi)
2025-09-22 09:14:55 +00:00
im_data_temp=im_data[hi:hi+shipsliceSize,wi:wi+shipsliceSize]
src_im_data_temp=src_im_data[hi:hi+shipsliceSize,wi:wi+shipsliceSize]
2025-09-22 07:54:22 +00:00
slice_ID = slice_ID + 1
if not is_all_same(im_data_temp):
sliceBinPath=os.path.join(binfolder, rootname+"_"+str(slice_ID).zfill(4)+"_image.tiff")
slicepngPath=os.path.join(pngfolder, rootname+"_"+str(slice_ID).zfill(4)+"_image.png")
slicesrctiffPath=os.path.join(tifffolder, rootname+"_"+str(slice_ID).zfill(4)+"_image.tiff")
write_tiff(src_im_data_temp, geotrans_temp, im_proj, slicesrctiffPath)
write_envi(im_data_temp,geotrans_temp,im_proj,sliceBinPath)
Image.fromarray(im_data_temp).save(slicepngPath,compress_level=0)
print("图像切片结束")
2025-09-22 09:14:55 +00:00
return slice_ID
def ishasPort(im_Geotrans,im_data,MLCPoints,JLCPoints,MJLCPoints):
LCpoints=MLCPoints+JLCPoints+MJLCPoints
# 获取范围
rows=im_data.shape[0]
cols=im_data.shape[1]
x1=im_Geotrans[0]+im_Geotrans[1]*0
x2=im_Geotrans[0]+im_Geotrans[1]*cols
y1=im_Geotrans[3]+im_Geotrans[5]*0
y2=im_Geotrans[3]+im_Geotrans[5]*rows
xmin=min(x1,x2)
xmax=max(x1,x2)
ymin=min(y1,y2)
ymax=max(y1,y2)
# 数据处理
for p in LCpoints:
x_in_range = (p[0] >= xmin) & (p[0]<= xmax)
y_in_range = (p[1] >= ymin) & (p[1] <= ymax)
within_rect_indices_mask = x_in_range & y_in_range
if within_rect_indices_mask:
return True
return False
def slicePortDataset(rootname,im_data,src_im_data, im_Geotrans, im_proj, outfolder,slice_ID,portfilestr):
# 读取portfilestr 中文件
MLCPoints=[]
JLCPoints=[]
MJLCPoints=[]
2025-10-03 05:37:55 +00:00
portfilelines=[]
2025-09-22 09:14:55 +00:00
with open(portfilestr,"r",encoding="utf-8") as portfile:
2025-10-03 05:37:55 +00:00
portfilelines=portfile.readlines()
for line in portfilelines:
if(len(line)>3):
linemetas=line.split("\t\t")
clsname=linemetas[0]
pointstr=linemetas[1]
pointx=float(pointstr.split(",")[0]) # PX
pointy=float(pointstr.split(",")[1]) # Py
if clsname=="JLC":
JLCPoints.append([pointx,pointy])
elif clsname=="MJLC":
MJLCPoints.append([pointx,pointy])
elif clsname=="MLC":
MLCPoints.append([pointx,pointy])
2025-09-22 09:14:55 +00:00
# 处理文件脚本
if len(MLCPoints)==0 and len(JLCPoints)==0 and len(MJLCPoints)==0:
return
else:
pass
# 切片主流程
2025-09-22 09:18:26 +00:00
binfolder=os.path.join(outfolder,"港口","unit8binfolder")
pngfolder=os.path.join(outfolder,"港口","pngfolder")
tifffolder=os.path.join(outfolder,"港口","tifffolder")
2025-09-22 09:14:55 +00:00
2025-10-03 05:37:55 +00:00
for P in JLCPoints:
Px=P[0]
Py=P[1]
Sx=P[0]-portsliceSize/2
Sy=P[1]-portsliceSize/2
wi=Sx if Sx>0 else 0
hi=Sy if Sy>0 else 0
slice_ID = slice_ID + 1
im_data_temp = im_data[hi:hi + portsliceSize, wi:wi + portsliceSize]
src_im_data_temp = src_im_data[hi:hi + portsliceSize, wi:wi + portsliceSize]
sliceBinPath = os.path.join(binfolder, rootname + "_" + str(slice_ID).zfill(4) + "_image.tiff")
slicepngPath = os.path.join(pngfolder, rootname + "_" + str(slice_ID).zfill(4) + "_image.png")
slicesrctiffPath = os.path.join(tifffolder, rootname + "_" + str(slice_ID).zfill(4) + "_image.tiff")
geotrans_temp = getsliceGeotrans(im_Geotrans, wi, hi)
write_tiff(src_im_data_temp, geotrans_temp, im_proj, slicesrctiffPath)
write_envi(im_data_temp, geotrans_temp, im_proj, sliceBinPath)
Image.fromarray(im_data_temp).save(slicepngPath, compress_level=4)
for P in MJLCPoints:
Px = P[0]
Py = P[1]
Sx = P[0] - portsliceSize / 2
Sy = P[1] - portsliceSize / 2
wi = Sx if Sx > 0 else 0
hi = Sy if Sy > 0 else 0
slice_ID = slice_ID + 1
im_data_temp = im_data[hi:hi + portsliceSize, wi:wi + portsliceSize]
src_im_data_temp = src_im_data[hi:hi + portsliceSize, wi:wi + portsliceSize]
sliceBinPath = os.path.join(binfolder, rootname + "_" + str(slice_ID).zfill(4) + "_image.tiff")
slicepngPath = os.path.join(pngfolder, rootname + "_" + str(slice_ID).zfill(4) + "_image.png")
slicesrctiffPath = os.path.join(tifffolder, rootname + "_" + str(slice_ID).zfill(4) + "_image.tiff")
geotrans_temp = getsliceGeotrans(im_Geotrans, wi, hi)
write_tiff(src_im_data_temp, geotrans_temp, im_proj, slicesrctiffPath)
write_envi(im_data_temp, geotrans_temp, im_proj, sliceBinPath)
Image.fromarray(im_data_temp).save(slicepngPath, compress_level=4)
for P in MLCPoints:
Px = P[0]
Py = P[1]
Sx = P[0] - portsliceSize / 2
Sy = P[1] - portsliceSize / 2
wi = Sx if Sx > 0 else 0
hi = Sy if Sy > 0 else 0
slice_ID = slice_ID + 1
im_data_temp = im_data[hi:hi + portsliceSize, wi:wi + portsliceSize]
src_im_data_temp = src_im_data[hi:hi + portsliceSize, wi:wi + portsliceSize]
sliceBinPath = os.path.join(binfolder, rootname + "_" + str(slice_ID).zfill(4) + "_image.tiff")
slicepngPath = os.path.join(pngfolder, rootname + "_" + str(slice_ID).zfill(4) + "_image.png")
slicesrctiffPath = os.path.join(tifffolder, rootname + "_" + str(slice_ID).zfill(4) + "_image.tiff")
geotrans_temp = getsliceGeotrans(im_Geotrans, wi, hi)
write_tiff(src_im_data_temp, geotrans_temp, im_proj, slicesrctiffPath)
write_envi(im_data_temp, geotrans_temp, im_proj, sliceBinPath)
Image.fromarray(im_data_temp).save(slicepngPath, compress_level=4)
2025-09-22 09:14:55 +00:00
print("图像切片结束")
return slice_ID
2025-09-24 08:46:53 +00:00
def sliceLabelPortDataset(rootname,im_data,src_im_data, im_Geotrans, im_proj, outfolder,slice_ID,portfilestr):
# 读取portfilestr 中文件
MLCPoints=[]
JLCPoints=[]
MJLCPoints=[]
with open(portfilestr,"r",encoding="utf-8") as portfile:
for line in portfile.readlines():
if(len(line)>3):
linemetas=line.split("\t\t")
clsname=linemetas[0]
pointstr=linemetas[1]
pointx=float(pointstr.split(",")[0])
pointy=float(pointstr.split(",")[1])
if clsname=="JLC":
JLCPoints.append([pointx,pointy])
elif clsname=="MJLC":
MJLCPoints.append([pointx,pointy])
elif clsname=="MLC":
MLCPoints.append([pointx,pointy])
# 处理文件脚本
if len(MLCPoints)==0 and len(JLCPoints)==0 and len(MJLCPoints)==0:
return
else:
pass
# 切片主流程
portuint8Tifffolder=os.path.join(outfolder,"港口","unit8tiff")
portlabelfolder=os.path.join(outfolder,"港口","MLCLabels")
unit8tiffPath=os.path.join(portuint8Tifffolder,"{}_uint8.tiff".format(rootname))
uint8labelPath=os.path.join(portlabelfolder,"{}_uint8.csv".format(rootname))
write_envi(im_data,im_Geotrans,im_proj,unit8tiffPath)
with open(portfilestr,"r",encoding="utf-8") as portfile:
with open(uint8labelPath, "w", encoding="utf-8") as labelfile:
for line in portfile.readlines():
if (len(line) > 3):
linemetas = line.split("\t\t")
clsname = linemetas[0]
pointstr = linemetas[1]
pointx = float(pointstr.split(",")[0])
pointy = float(pointstr.split(",")[1])
labelfile.write("{},{},{}\n".format(pointx,pointy,clsname))
return None
2025-09-22 07:54:22 +00:00
2025-09-22 09:14:55 +00:00
def stretchSliceProcess(infilepath, outfolder,portfilestr, strechmethod):
2025-09-22 09:18:26 +00:00
shipbinfolder=os.path.join(outfolder,"舰船","unit8binfolder")
shippngfolder=os.path.join(outfolder,"舰船","pngfolder")
shiptifffolder=os.path.join(outfolder,"舰船","tifffolder")
2025-09-22 07:54:22 +00:00
allpngfolder = os.path.join(outfolder, "allpngfolder")
2025-09-22 09:18:26 +00:00
2025-10-03 06:06:14 +00:00
portbinfolder=os.path.join(outfolder,"港口","unit8binfolder")
portpngfolder=os.path.join(outfolder,"港口","pngfolder")
porttifffolder=os.path.join(outfolder,"港口","tifffolder")
2025-09-24 08:46:53 +00:00
portuint8Tifffolder=os.path.join(outfolder,"港口","unit8tiff")
2025-09-24 08:49:53 +00:00
portlabelfolder=os.path.join(outfolder,"港口","PortLabels")
2025-09-22 09:18:26 +00:00
existOrCreate(shipbinfolder)
existOrCreate(shippngfolder)
existOrCreate(shiptifffolder)
existOrCreate(allpngfolder)
2025-10-03 06:06:14 +00:00
existOrCreate(portbinfolder)
existOrCreate(portpngfolder)
existOrCreate(porttifffolder)
2025-09-24 08:46:53 +00:00
existOrCreate(portuint8Tifffolder)
existOrCreate(portlabelfolder)
2025-09-22 09:18:26 +00:00
2025-09-22 07:54:22 +00:00
im_proj, im_Geotrans, im_data=read_tif(infilepath)
src_im_data=im_data*1.0
im_data = DataStrech(im_data,strechmethod) # 拉伸
im_data = im_data.astype(np.uint8)
rootname=Path(infilepath).stem
allImagePath=os.path.join(allpngfolder, rootname+"_all.png")
2025-10-10 12:30:37 +00:00
Image.fromarray(im_data).save(allImagePath,compress_level=9)
# write_allExtend(im_data, im_Geotrans, im_proj, allImagePath)
2025-09-24 08:46:53 +00:00
slice_ID=0
2025-09-25 12:30:08 +00:00
slice_ID=sliceShipDataset(rootname,im_data, src_im_data,im_Geotrans, im_proj, outfolder) # 舰船切片
2025-09-22 10:07:46 +00:00
slice_ID=slice_ID+1
if os.path.exists(portfilestr):
print("存在港口文件")
slice_ID=slicePortDataset(rootname,im_data, src_im_data,im_Geotrans, im_proj, outfolder,slice_ID,portfilestr)
2025-10-03 05:37:55 +00:00
# slice_ID=sliceLabelPortDataset(rootname,im_data, src_im_data,im_Geotrans, im_proj, outfolder,slice_ID,portfilestr) # 港口拉伸
2025-09-22 07:54:22 +00:00
print("图像切片与拉伸完成")
pass
def getParams():
parser = argparse.ArgumentParser()
parser.add_argument('-i','--infile',type=str,default=r"F:\天仪SAR卫星数据集\舰船数据\bc2-sp-org-vv-20250205t032055-021998-000036-0055ee-01.tiff", help='输入shapefile文件')
2025-09-22 09:14:55 +00:00
parser.add_argument('-p', '--portfile',type=str,default=r"F:\天仪SAR卫星数据集\舰船数据\bc2-sp-org-vv-20250205t032055-021998-000036-0055ee-01.txt", help='输出geojson文件')
2025-09-22 07:54:22 +00:00
parser.add_argument('-o', '--outfile',type=str,default=r"F:\天仪SAR卫星数据集\舰船数据\切片结果", help='输出geojson文件')
group = parser.add_mutually_exclusive_group()
group.add_argument(
'--filemode',
action='store_const',
const='filemode',
dest='mode',
help='文件模式'
)
group.add_argument(
'--slicemode',
action='store_const',
const='slicemode',
dest='mode',
help='切片模式'
)
parser.set_defaults(mode='slicemode')
group = parser.add_mutually_exclusive_group()
group.add_argument(
'--Linear',
action='store_const',
const='Linear',
dest='method',
help='线性拉伸'
)
group.add_argument(
'--Linear1prec',
action='store_const',
const='Linear1',
dest='method',
help='1%线性拉伸'
)
group.add_argument(
'--Linear2prec',
action='store_const',
const='Linear2',
dest='method',
help='2%线性拉伸'
)
group.add_argument(
'--Linear5prec',
action='store_const',
const='Linear5',
dest='method',
help='5%线性拉伸'
)
group.add_argument(
'--SquareRoot',
action='store_const',
const='SquareRoot',
dest='method',
help='平方根拉伸'
)
parser.set_defaults(method='SquareRoot')
args = parser.parse_args()
return args
if __name__ == '__main__':
try:
parser = getParams()
intiffPath=parser.infile
modestr=parser.mode
methodstr = parser.method
2025-09-22 09:14:55 +00:00
2025-09-22 07:54:22 +00:00
if modestr == "filemode":
outbinPath = parser.outfile
print('infile=', intiffPath)
print('outfile=', outbinPath)
print('method=', methodstr)
stretchProcess(intiffPath, outbinPath, methodstr)
elif modestr == "slicemode":
outfolder = parser.outfile
2025-09-22 09:14:55 +00:00
portfilestr = parser.portfile
2025-09-22 07:54:22 +00:00
print('infile=', intiffPath)
print('outfolder=', outfolder)
print('method=', methodstr)
2025-09-22 09:14:55 +00:00
print('portfile=', portfilestr)
stretchSliceProcess(intiffPath, outfolder,portfilestr, methodstr)
2025-09-22 07:54:22 +00:00
pass
else:
print("模式错误")
exit(2)
except Exception as e:
print(e)
exit(3)