1024 lines
32 KiB
C++
1024 lines
32 KiB
C++
#include "SGDP4.h"
|
|
|
|
#include "SatelliteException.h"
|
|
|
|
#include <math.h>
|
|
|
|
SGDP4::SGDP4(void) {
|
|
first_run_ = true;
|
|
}
|
|
|
|
SGDP4::~SGDP4(void) {
|
|
}
|
|
|
|
void SGDP4::SetTle(const Tle& tle) {
|
|
|
|
/*
|
|
* extract and format tle data
|
|
*/
|
|
mean_anomoly_ = tle.GetField(Tle::FLD_M, Tle::U_RAD);
|
|
ascending_node_ = tle.GetField(Tle::FLD_RAAN, Tle::U_RAD);
|
|
argument_perigee_ = tle.GetField(Tle::FLD_ARGPER, Tle::U_RAD);
|
|
eccentricity_ = tle.GetField(Tle::FLD_E);
|
|
inclination_ = tle.GetField(Tle::FLD_I, Tle::U_RAD);
|
|
mean_motion_ = tle.GetField(Tle::FLD_MMOTION) / (1440.0 / Globals::TWOPI());
|
|
bstar_ = tle.GetField(Tle::FLD_BSTAR);
|
|
|
|
/*
|
|
* generate julian date for tle epoch
|
|
*/
|
|
epoch_ = tle.GetEpoch();
|
|
|
|
/*
|
|
* recover original mean motion (xnodp) and semimajor axis (aodp)
|
|
* from input elements
|
|
*/
|
|
double a1 = pow(Globals::XKE() / MeanMotion(), Globals::TOTHRD());
|
|
cosio_ = cos(Inclination());
|
|
double theta2 = cosio_ * cosio_;
|
|
x3thm1_ = 3.0 * theta2 - 1.0;
|
|
double eosq = Eccentricity() * Eccentricity();
|
|
double betao2 = 1.0 - eosq;
|
|
double betao = sqrt(betao2);
|
|
double del1 = 1.5 * Globals::CK2() * x3thm1_ / (a1 * a1 * betao * betao2);
|
|
double ao = a1 * (1.0 - del1 * (0.5 * Globals::TOTHRD() + del1 * (1.0 + 134.0 / 81.0 * del1)));
|
|
double delo = 1.5 * Globals::CK2() * x3thm1_ / (ao * ao * betao * betao2);
|
|
|
|
recovered_mean_motion_ = MeanMotion() / (1.0 + delo);
|
|
recovered_semi_major_axis_ = ao / (1.0 - delo);
|
|
|
|
/*
|
|
* find perigee and period
|
|
*/
|
|
perigee_ = (RecoveredSemiMajorAxis() * (1.0 - Eccentricity()) - Globals::AE()) * Globals::XKMPER();
|
|
period_ = Globals::TWOPI() / RecoveredMeanMotion();
|
|
|
|
Initialize(theta2, betao2, betao);
|
|
}
|
|
|
|
void SGDP4::Initialize(const double& theta2, const double& betao2, const double& betao) {
|
|
|
|
cosio_ = 0.0;
|
|
sinio_ = 0.0;
|
|
|
|
eta_ = 0.0;
|
|
coef1_ = 0.0;
|
|
c1_ = 0.0;
|
|
a3ovk2_ = 0.0;
|
|
x1mth2_ = 0.0;
|
|
c4_ = 0.0;
|
|
c5_ = 0.0;
|
|
|
|
xmdot_ = 0.0;
|
|
omgdot_ = 0.0;
|
|
xnodot_ = 0.0;
|
|
xnodcf_ = 0.0;
|
|
t2cof_ = 0.0;
|
|
xlcof_ = 0.0;
|
|
aycof_ = 0.0;
|
|
x7thm1_ = 0.0;
|
|
omgcof_ = 0.0;
|
|
xmcof_ = 0.0;
|
|
delmo_ = 0.0;
|
|
sinmo_ = 0.0;
|
|
|
|
d2_ = 0.0;
|
|
d3_ = 0.0;
|
|
d4_ = 0.0;
|
|
t3cof_ = 0.0;
|
|
t4cof_ = 0.0;
|
|
t5cof_ = 0.0;
|
|
|
|
gsto_ = 0.0;
|
|
|
|
if (Period() >= 225.0) {
|
|
use_deep_space_ = true;
|
|
|
|
} else {
|
|
use_deep_space_ = false;
|
|
use_simple_model_ = false;
|
|
/*
|
|
* for perigee less than 220 kilometers, the simple_model flag is set and
|
|
* the equations are truncated to linear variation in sqrt a and
|
|
* quadratic variation in mean anomly. also, the c3 term, the
|
|
* delta omega term and the delta m term are dropped
|
|
*/
|
|
if (Perigee() < 220.0) {
|
|
use_simple_model_ = true;
|
|
}
|
|
}
|
|
|
|
double s4_ = Globals::S();
|
|
double qoms24_ = Globals::QOMS2T();
|
|
/*
|
|
* for perigee below 156km, the values of
|
|
* s4 and qoms2t are altered
|
|
*/
|
|
if (Perigee() < 156.0) {
|
|
s4_ = Perigee() - 78.0;
|
|
if (Perigee() <= 98.0) {
|
|
s4_ = 20.0;
|
|
}
|
|
qoms24_ = pow((120.0 - s4_) * Globals::AE() / Globals::XKMPER(), 4.0);
|
|
s4_ = s4_ / Globals::XKMPER() + Globals::AE();
|
|
}
|
|
|
|
double pinvsq = 1.0 / (RecoveredSemiMajorAxis() * RecoveredSemiMajorAxis() * betao2 * betao2);
|
|
|
|
double tsi = 1.0 / (RecoveredSemiMajorAxis() - s4_);
|
|
eta_ = RecoveredSemiMajorAxis() * Eccentricity() * tsi;
|
|
double etasq = eta_ * eta_;
|
|
double eeta = Eccentricity() * eta_;
|
|
double psisq = fabs(1.0 - etasq);
|
|
double coef = qoms24_ * pow(tsi, 4.0);
|
|
coef1_ = coef / pow(psisq, 3.5);
|
|
double c2 = coef1_ * RecoveredMeanMotion() * (RecoveredSemiMajorAxis() * (1.0 + 1.5 * etasq + eeta *
|
|
(4.0 + etasq)) + 0.75 * Globals::CK2() * tsi / psisq *
|
|
x3thm1_ * (8.0 + 3.0 * etasq * (8.0 + etasq)));
|
|
c1_ = BStar() * c2;
|
|
a3ovk2_ = -Globals::XJ3() / Globals::CK2() * pow(Globals::AE(), 3.0);
|
|
|
|
x1mth2_ = 1.0 - theta2;
|
|
c4_ = 2.0 * RecoveredMeanMotion() * coef1_ * RecoveredSemiMajorAxis() * betao2 *
|
|
(eta_ * (2.0 + 0.5 * etasq) + Eccentricity() * (0.5 + 2.0 * etasq) -
|
|
2.0 * Globals::CK2() * tsi / (RecoveredSemiMajorAxis() * psisq) *
|
|
(-3.0 * x3thm1_ * (1.0 - 2.0 * eeta + etasq *
|
|
(1.5 - 0.5 * eeta)) + 0.75 * x1mth2_ * (2.0 * etasq - eeta *
|
|
(1.0 + etasq)) * cos(2.0 * ArgumentPerigee())));
|
|
double theta4 = theta2 * theta2;
|
|
double temp1 = 3.0 * Globals::CK2() * pinvsq * RecoveredMeanMotion();
|
|
double temp2 = temp1 * Globals::CK2() * pinvsq;
|
|
double temp3 = 1.25 * Globals::CK4() * pinvsq * pinvsq * RecoveredMeanMotion();
|
|
xmdot_ = RecoveredMeanMotion() + 0.5 * temp1 * betao * x3thm1_ + 0.0625 * temp2 * betao *
|
|
(13.0 - 78.0 * theta2 + 137.0 * theta4);
|
|
double x1m5th = 1.0 - 5.0 * theta2;
|
|
omgdot_ = -0.5 * temp1 * x1m5th + 0.0625 * temp2 * (7.0 - 114.0 * theta2 +
|
|
395.0 * theta4) + temp3 * (3.0 - 36.0 * theta2 + 49.0 * theta4);
|
|
double xhdot1_ = -temp1 * cosio_;
|
|
xnodot_ = xhdot1_ + (0.5 * temp2 * (4.0 - 19.0 * theta2) + 2.0 * temp3 *
|
|
(3.0 - 7.0 * theta2)) * cosio_;
|
|
xnodcf_ = 3.5 * betao2 * xhdot1_ * c1_;
|
|
t2cof_ = 1.5 * c1_;
|
|
|
|
if (fabs(cosio_ + 1.0) > 1.5e-12)
|
|
xlcof_ = 0.125 * a3ovk2_ * sinio_ * (3.0 + 5.0 * cosio_) / (1.0 + cosio_);
|
|
else
|
|
xlcof_ = 0.125 * a3ovk2_ * sinio_ * (3.0 + 5.0 * cosio_) / 1.5e-12;
|
|
|
|
aycof_ = 0.25 * a3ovk2_ * sinio_;
|
|
x7thm1_ = 7.0 * theta2 - 1.0;
|
|
|
|
if (!use_deep_space_) {
|
|
|
|
double c3 = 0.0;
|
|
if (Eccentricity() > 1.0e-4) {
|
|
c3 = coef * tsi * a3ovk2_ * RecoveredMeanMotion() * Globals::AE() *
|
|
sinio_ / Eccentricity();
|
|
}
|
|
|
|
c5_ = 2.0 * coef1_ * RecoveredSemiMajorAxis() * betao2 * (1.0 + 2.75 * (etasq + eeta) + eeta * etasq);
|
|
omgcof_ = BStar() * c3 * cos(ArgumentPerigee());
|
|
|
|
xmcof_ = 0.0;
|
|
if (Eccentricity() > 1.0e-4)
|
|
xmcof_ = -Globals::TOTHRD() * coef * BStar() * Globals::AE() / eeta;
|
|
|
|
delmo_ = pow(1.0 + eta_ * (cos(MeanAnomoly())), 3.0);
|
|
sinmo_ = sin(MeanAnomoly());
|
|
}
|
|
|
|
if (!use_simple_model_) {
|
|
double c1sq = c1_ * c1_;
|
|
d2_ = 4.0 * RecoveredSemiMajorAxis() * tsi * c1sq;
|
|
double temp = d2_ * tsi * c1_ / 3.0;
|
|
d3_ = (17.0 * RecoveredSemiMajorAxis() + s4_) * temp;
|
|
d4_ = 0.5 * temp * RecoveredSemiMajorAxis() * tsi * (221.0 * RecoveredSemiMajorAxis() + 31.0 * s4_) * c1_;
|
|
t3cof_ = d2_ + 2.0 * c1sq;
|
|
t4cof_ = 0.25 * (3.0 * d3_ + c1_ * (12.0 * d2_ + 10.0 * c1sq));
|
|
t5cof_ = 0.2 * (3.0 * d4_ + 12.0 * c1_ * d3_ + 6.0 * d2_ * d2_ + 15.0 *
|
|
c1sq * (2.0 * d2_ + c1sq));
|
|
} else if (use_deep_space_) {
|
|
gsto_ = Epoch().ToGMST();
|
|
double sing = sin(ArgumentPerigee());
|
|
double cosg = cos(ArgumentPerigee());
|
|
//DeepSpaceInitialize(eosq, sinio, cosio, betao);
|
|
//CALL DPINIT(EOSQ,SINIO,COSIO,BETAO,AODP,THETA2,
|
|
// SING,COSG,BETAO2,XMDOT,OMGDOT,XNODOT,XNODP)
|
|
}
|
|
|
|
first_run_ = false;
|
|
}
|
|
|
|
void SGDP4::FindPosition(double tsince) {
|
|
|
|
struct TleData tle_data_tsince_;
|
|
memset(&tle_data_tsince_, 0, sizeof (tle_data_tsince_));
|
|
|
|
tle_data_tsince_.bstar = BStar();
|
|
tle_data_tsince_.eo = Eccentricity();
|
|
tle_data_tsince_.omega = ArgumentPerigee();
|
|
tle_data_tsince_.xincl = Inclination();
|
|
tle_data_tsince_.xmo = MeanAnomoly();
|
|
tle_data_tsince_.xno = RecoveredMeanMotion();
|
|
tle_data_tsince_.xnodeo = AscendingNode();
|
|
tle_data_tsince_.epoch = Epoch();
|
|
|
|
double xl = 0.0;
|
|
double a = 0.0;
|
|
|
|
/*
|
|
* update for secular gravity and atmospheric drag
|
|
*/
|
|
double xmdf = MeanAnomoly() + xmdot_ * tsince;
|
|
double omgadf = ArgumentPerigee() + omgdot_ * tsince;
|
|
double xnoddf = tle_data_tsince_.xnodeo + xnodot_ * tsince;
|
|
|
|
double tsq = tsince * tsince;
|
|
double xnode = xnoddf + xnodcf_ * tsq;
|
|
double tempa = 1.0 - c1_ * tsince;
|
|
double tempe = tle_data_tsince_.bstar * c4_ * tsince;
|
|
double templ = t2cof_ * tsq;
|
|
|
|
tle_data_tsince_.omega = omgadf;
|
|
|
|
if (use_deep_space_) {
|
|
double xn = RecoveredMeanMotion();
|
|
#if 0
|
|
CALL DPSEC(xmdf, tle_data_tsince_.omega, XNODE, tle_data_tsince_.eo, tle_data_tsince_.xincl, xn, tsince);
|
|
#endif
|
|
a = pow(Globals::XKE() / xn, Globals::TOTHRD()) * pow(tempa, 2.0);
|
|
tle_data_tsince_.eo -= tempe;
|
|
double xmam = xmdf + RecoveredMeanMotion() * templ;
|
|
#if 0
|
|
CALL DPPER(tle_data_tsince_.eo, tle_data_tsince_.xincl, tle_data_tsince_.omega, tle_data_tsince_.xnodeo, xmam);
|
|
#endif
|
|
xl = xmam + tle_data_tsince_.omega + xnode;
|
|
|
|
/*
|
|
* re-compute the perturbed values
|
|
*/
|
|
sinio_ = sin(tle_data_tsince_.xincl);
|
|
cosio_ = cos(tle_data_tsince_.xincl);
|
|
|
|
double theta2 = cosio_ * cosio_;
|
|
|
|
x3thm1_ = 3.0 * theta2 - 1.0;
|
|
x1mth2_ = 1.0 - theta2;
|
|
x7thm1_ = 7.0 * theta2 - 1.0;
|
|
|
|
if (fabs(cosio_ + 1.0) > 1.5e-12)
|
|
xlcof_ = 0.125 * a3ovk2_ * sinio_ * (3.0 + 5.0 * cosio_) / (1.0 + cosio_);
|
|
else
|
|
xlcof_ = 0.125 * a3ovk2_ * sinio_ * (3.0 + 5.0 * cosio_) / 1.5e-12;
|
|
|
|
aycof_ = 0.25 * a3ovk2_ * sinio_;
|
|
|
|
} else {
|
|
double xmp = xmdf;
|
|
if (!use_simple_model_) {
|
|
double delomg = omgcof_ * tsince;
|
|
double delm = xmcof_ * (pow(1.0 + eta_ * cos(xmdf), 3.0) - delmo_);
|
|
double temp1 = delomg + delm;
|
|
xmp = xmdf + temp1;
|
|
tle_data_tsince_.omega -= temp1;
|
|
double tcube = tsq * tsince;
|
|
double tfour = tsince * tcube;
|
|
tempa -= d2_ * tsq - d3_ * tcube - d4_ * tfour;
|
|
tempe += tle_data_tsince_.bstar * c5_ * (sin(xmp) - sinmo_);
|
|
templ += t3cof_ * tcube + tfour * (t4cof_ + tsince * t5cof_);
|
|
}
|
|
a = RecoveredSemiMajorAxis() * pow(tempa, 2.0);
|
|
tle_data_tsince_.eo = Eccentricity() - tempe;
|
|
xl = xmp + tle_data_tsince_.omega + xnode + RecoveredMeanMotion() * templ;
|
|
}
|
|
|
|
double beta = sqrt(1.0 - tle_data_tsince_.eo * tle_data_tsince_.eo);
|
|
double xn = Globals::XKE() / pow(a, 1.5);
|
|
/*
|
|
* long period periodics
|
|
*/
|
|
double axn;
|
|
double xll;
|
|
double aynl;
|
|
double xlt;
|
|
double ayn;
|
|
{
|
|
axn = tle_data_tsince_.eo * cos(tle_data_tsince_.omega);
|
|
double temp1 = 1.0 / (a * beta * beta);
|
|
xll = temp1 * xlcof_ * axn;
|
|
aynl = temp1 * aycof_;
|
|
xlt = xl + xll;
|
|
ayn = tle_data_tsince_.eo * sin(tle_data_tsince_.omega) + aynl;
|
|
}
|
|
/*
|
|
* solve keplers equation
|
|
*/
|
|
double capu = fmod(xlt - xnode, Globals::TWOPI());
|
|
double epw = capu;
|
|
|
|
double sinepw = 0.0;
|
|
double cosepw = 0.0;
|
|
double ecose = 0.0;
|
|
double esine = 0.0;
|
|
|
|
bool kepler_running = true;
|
|
|
|
for (int i = 0; i < 10 && kepler_running; i++) {
|
|
sinepw = sin(epw);
|
|
cosepw = cos(epw);
|
|
ecose = axn * cosepw + ayn * sinepw;
|
|
esine = axn * sinepw - ayn * cosepw;
|
|
|
|
double f = capu - epw + esine;
|
|
|
|
if (fabs(f) < 1.0e-12) {
|
|
kepler_running = false;
|
|
} else {
|
|
/*
|
|
* 1st order Newton-Raphson correction
|
|
*/
|
|
double df = 1.0 - ecose;
|
|
double nr = f / df;
|
|
|
|
/*
|
|
* Newton-Raphson correction of -F/DF
|
|
*/
|
|
epw += nr;
|
|
}
|
|
}
|
|
/*
|
|
* short period preliminary quantities
|
|
*/
|
|
double pl;
|
|
double r;
|
|
double betal;
|
|
double rdot;
|
|
double rfdot;
|
|
double u;
|
|
double sin2u;
|
|
double cos2u;
|
|
{
|
|
double elsq = axn * axn + ayn * ayn;
|
|
double temp1 = 1.0 - elsq;
|
|
pl = a * temp1;
|
|
r = a * (1.0 - ecose);
|
|
betal = sqrt(temp1);
|
|
double temp2 = 1.0 / r;
|
|
double temp3 = a * temp2;
|
|
double temp4 = 1.0 / (1.0 + betal);
|
|
rdot = Globals::XKE() * sqrt(a) * esine * temp2;
|
|
rfdot = Globals::XKE() * sqrt(pl) * temp2;
|
|
double cosu = temp3 * (cosepw - axn + ayn * esine * temp4);
|
|
double sinu = temp3 * (sinepw - ayn - axn * esine * temp4);
|
|
u = atan2(sinu, cosu);
|
|
sin2u = 2.0 * sinu * cosu;
|
|
cos2u = 2.0 * cosu * cosu - 1.0;
|
|
}
|
|
|
|
/*
|
|
* update for short periodics
|
|
*/
|
|
double rk;
|
|
double uk;
|
|
double xnodek;
|
|
double xinck;
|
|
double rdotk;
|
|
double rfdotk;
|
|
{
|
|
double temp1 = 1.0 / pl;
|
|
double temp2 = Globals::CK2() * temp1;
|
|
double temp3 = temp2 * temp1;
|
|
rk = r * (1.0 - 1.5 * temp3 * betal * x3thm1_) + 0.5 * temp2 * x1mth2_ * cos2u;
|
|
uk = u - 0.25 * temp3 * x7thm1_ * sin2u;
|
|
xnodek = xnode + 1.5 * temp3 * cosio_ * sin2u;
|
|
xinck = tle_data_tsince_.xincl + 1.5 * temp3 * cosio_ * sinio_ * cos2u;
|
|
rdotk = rdot - xn * temp2 * x1mth2_ * sin2u;
|
|
rfdotk = rfdot + xn * temp2 * (x1mth2_ * cos2u + 1.5 * x3thm1_);
|
|
}
|
|
/*
|
|
* orientation vectors
|
|
*/
|
|
double sinuk = sin(uk);
|
|
double cosuk = cos(uk);
|
|
double sinik = sin(xinck);
|
|
double cosik = cos(xinck);
|
|
double sinnok = sin(xnodek);
|
|
double cosnok = cos(xnodek);
|
|
double xmx = -sinnok * cosik;
|
|
double xmy = cosnok * cosik;
|
|
double ux = xmx * sinuk + cosnok * cosuk;
|
|
double uy = xmy * sinuk + sinnok * cosuk;
|
|
double uz = sinik * sinuk;
|
|
double vx = xmx * cosuk - cosnok * sinuk;
|
|
double vy = xmy * cosuk - sinnok * sinuk;
|
|
double vz = sinik * cosuk;
|
|
/*
|
|
* position and velocity
|
|
*/
|
|
double x = rk * ux * Globals::XKMPER();
|
|
double y = rk * uy * Globals::XKMPER();
|
|
double z = rk * uz * Globals::XKMPER();
|
|
double xdot = (rdotk * ux + rfdotk * vx) * Globals::XKMPER() / 60.0;
|
|
double ydot = (rdotk * uy + rfdotk * vy) * Globals::XKMPER() / 60.0;
|
|
double zdot = (rdotk * uz + rfdotk * vz) * Globals::XKMPER() / 60.0;
|
|
}
|
|
|
|
/*
|
|
* entry dpinit(const double& eqsq, const double& siniq, const double& cosiq,
|
|
* const double& rteqsq, cosq2, sinomo, cosomo, bsq, xlldot, omgdt, xnodot, xnodp)
|
|
*/
|
|
|
|
/*
|
|
* deep space initialization
|
|
*/
|
|
void SGDP4::DeepSpaceInitialize() {
|
|
|
|
double a1;
|
|
double a2;
|
|
double a3;
|
|
double a4;
|
|
double a5;
|
|
double a6;
|
|
double a7;
|
|
double a8;
|
|
double a9;
|
|
double a10;
|
|
|
|
double x1;
|
|
double x2;
|
|
double x3;
|
|
double x4;
|
|
double x5;
|
|
double x6;
|
|
double x7;
|
|
double x8;
|
|
|
|
double z1;
|
|
double z2;
|
|
double z3;
|
|
|
|
double z11;
|
|
double z12;
|
|
double z13;
|
|
|
|
double z21;
|
|
double z22;
|
|
double z23;
|
|
|
|
double z31;
|
|
double z32;
|
|
double z33;
|
|
|
|
double s1;
|
|
double s2;
|
|
double s3;
|
|
double s4;
|
|
double s5;
|
|
double s6;
|
|
double s7;
|
|
|
|
double se;
|
|
double si;
|
|
double sl;
|
|
double sgh;
|
|
|
|
double ZNS = 1.19459E-5;
|
|
double C1SS = 2.9864797E-6;
|
|
double ZES = 0.01675;
|
|
double ZNL = 1.5835218E-4;
|
|
double C1L = 4.7968065E-7;
|
|
double ZEL = 0.05490;
|
|
double ZCOSIS = 0.91744867;
|
|
double ZSINI = 0.39785416;
|
|
double ZSINGS = -0.98088458;
|
|
double ZCOSGS = 0.1945905;
|
|
double Q22 = 1.7891679E-6;
|
|
double Q31 = 2.1460748E-6;
|
|
double Q33 = 2.2123015E-7;
|
|
double ROOT22 = 1.7891679E-6;
|
|
double ROOT32 = 3.7393792E-7;
|
|
double ROOT44 = 7.3636953E-9;
|
|
double ROOT52 = 1.1428639E-7;
|
|
double ROOT54 = 2.1765803E-9;
|
|
double THDT = 4.3752691E-3;
|
|
|
|
double ZCOSHS = 1.0;
|
|
double ZSINHS = 0.0;
|
|
double G22 = 5.7686396;
|
|
double G32 = 0.95240898;
|
|
double G44 = 1.8014998;
|
|
double G52 = 1.0508330;
|
|
double G54 = 4.4108898;
|
|
|
|
|
|
|
|
|
|
double aqnv = 1.0 / RecoveredSemiMajorAxis();
|
|
double xpidot = omgdt + xnodot_;
|
|
double sinq = sin(AscendingNode());
|
|
double cosq = cos(AscendingNode());
|
|
|
|
/*
|
|
* initialize lunar solar terms
|
|
*/
|
|
d_day_ = Epoch().FromJan1_12h_1900();
|
|
|
|
double xnodce = 4.5236020 - 9.2422029e-4 * d_day_;
|
|
double stem = sin(xnodce);
|
|
double ctem = cos(xnodce);
|
|
double zcosil = 0.91375164 - 0.03568096 * ctem;
|
|
double zsinil = sqrt(1.0 - zcosil * zcosil);
|
|
double zsinhl = 0.089683511 * stem / zsinil;
|
|
double zcoshl = sqrt(1.0 - zsinhl * zsinhl);
|
|
double c = 4.7199672 + 0.22997150 * d_day_;
|
|
double gam = 5.8351514 + 0.0019443680 * d_day_;
|
|
double zmol = fmod2p(c - gam);
|
|
double zx = 0.39785416 * stem / zsinil;
|
|
double zy = zcoshl * ctem + 0.91744867 * zsinhl * stem;
|
|
zx = atan2(zx, zy);
|
|
zx = gam + zx - xnodce;
|
|
double zcosgl = cos(zx);
|
|
double zsingl = sin(zx);
|
|
double zmos = 6.2565837 + 0.017201977 * d_day_;
|
|
zmos = fmod2p(zmos);
|
|
|
|
/*
|
|
* do solar terms
|
|
*/
|
|
d_savtsn_ = 1.0e20;
|
|
double zcosg = ZCOSGS;
|
|
double zsing = ZSINGS;
|
|
double zcosi = ZCOSIS;
|
|
double zsini = ZSINI;
|
|
double zcosh = cosq;
|
|
double zsinh = sinq;
|
|
double cc = C1SS;
|
|
double zn = ZNS;
|
|
double ze = ZES;
|
|
double zmo = d_zmos_;
|
|
double xnoi = 1.0 / RecoveredMeanMotion();
|
|
|
|
for (int cnt = 0; cnt < 2; cnt++) {
|
|
/*
|
|
* solar terms are done a second time after lunar terms are done
|
|
*/
|
|
a1 = zcosg * zcosh + zsing * zcosi * zsinh;
|
|
a3 = -zsing * zcosh + zcosg * zcosi * zsinh;
|
|
a7 = -zcosg * zsinh + zsing * zcosi * zcosh;
|
|
a8 = zsing * zsini;
|
|
a9 = zsing * zsinh + zcosg * zcosi*zcosh;
|
|
a10 = zcosg * zsini;
|
|
a2 = cosiq * a7 + siniq * a8;
|
|
a4 = cosiq * a9 + siniq * a10;
|
|
a5 = -siniq * a7 + cosiq * a8;
|
|
a6 = -siniq * a9 + cosiq * a10;
|
|
x1 = a1 * cosomo + a2 * sinomo;
|
|
x2 = a3 * cosomo + a4 * sinomo;
|
|
x3 = -a1 * sinomo + a2 * cosomo;
|
|
x4 = -a3 * sinomo + a4 * cosomo;
|
|
x5 = a5 * sinomo;
|
|
x6 = a6 * sinomo;
|
|
x7 = a5 * cosomo;
|
|
x8 = a6 * cosomo;
|
|
z31 = 12.0 * x1 * x1 - 3. * x3 * x3;
|
|
z32 = 24.0 * x1 * x2 - 6. * x3 * x4;
|
|
z33 = 12.0 * x2 * x2 - 3. * x4 * x4;
|
|
z1 = 3.0 * (a1 * a1 + a2 * a2) + z31 * eqsq;
|
|
z2 = 6.0 * (a1 * a3 + a2 * a4) + z32 * eqsq;
|
|
z3 = 3.0 * (a3 * a3 + a4 * a4) + z33 * eqsq;
|
|
z11 = -6.0 * a1 * a5 + eqsq * (-24. * x1 * x7 - 6. * x3 * x5);
|
|
z12 = -6.0 * (a1 * a6 + a3 * a5) + eqsq * (-24. * (x2 * x7 + x1 * x8) - 6. * (x3 * x6 + x4 * x5));
|
|
z13 = -6.0 * a3 * a6 + eqsq * (-24. * x2 * x8 - 6. * x4 * x6);
|
|
z21 = 6.0 * a2 * a5 + eqsq * (24. * x1 * x5 - 6. * x3 * x7);
|
|
z22 = 6.0 * (a4 * a5 + a2 * a6) + eqsq * (24. * (x2 * x5 + x1 * x6) - 6. * (x4 * x7 + x3 * x8));
|
|
z23 = 6.0 * a4 * a6 + eqsq * (24. * x2 * x6 - 6. * x4 * x8);
|
|
z1 = z1 + z1 + bsq * z31;
|
|
z2 = z2 + z2 + bsq * z32;
|
|
z3 = z3 + z3 + bsq * z33;
|
|
s3 = cc * xnoi;
|
|
s2 = -0.5 * s3 / rteqsq;
|
|
s4 = s3 * rteqsq;
|
|
s1 = -15.0 * Eccentricity() * s4;
|
|
s5 = x1 * x3 + x2 * x4;
|
|
s6 = x2 * x3 + x1 * x4;
|
|
s7 = x2 * x4 - x1 * x3;
|
|
se = s1 * zn * s5;
|
|
si = s2 * zn * (z11 + z13);
|
|
sl = -zn * s3 * (z1 + z3 - 14.0 - 6.0 * eqsq);
|
|
sgh = s4 * zn * (z31 + z33 - 6.0);
|
|
|
|
/*
|
|
* replaced
|
|
* sh = -zn * s2 * (z21 + z23
|
|
* with
|
|
* shdq = (-zn * s2 * (z21 + z23)) / siniq
|
|
*/
|
|
if (Inclination() < 5.2359877e-2 || Inclination() > Globals::PI() - 5.2359877e-2) {
|
|
shdq = 0.0;
|
|
} else {
|
|
shdq = (-zn * s2 * (z21 + z23)) / siniq;
|
|
}
|
|
|
|
d_ee2_ = 2.0 * s1 * s6;
|
|
d_e3_ = 2.0 * s1 * s7;
|
|
d_xi2_ = 2.0 * s2 * z12;
|
|
d_xi3_ = 2.0 * s2 * (z13 - z11);
|
|
d_xl2_ = -2.0 * s3 * z2;
|
|
d_xl3_ = -2.0 * s3 * (z3 - z1);
|
|
d_xl4_ = -2.0 * s3 * (-21.0 - 9.0 * eqsq) * ze;
|
|
d_xgh2_ = 2.0 * s4 * z32;
|
|
d_xgh3_ = 2.0 * s4 * (z33 - z31);
|
|
d_xgh4_ = -18.0 * s4 * ze;
|
|
d_xh2_ = -2.0 * s2 * z22;
|
|
d_xh3_ = -2.0 * s2 * (z23 - z21);
|
|
|
|
if (cnt == 1)
|
|
break;
|
|
/*
|
|
* do lunar terms
|
|
*/
|
|
d_sse_ = se;
|
|
d_ssi_ = si;
|
|
d_ssl_ = sl;
|
|
d_ssh_ = shdq;
|
|
d_ssg_ = sgh - cosiq * d_ssh_;
|
|
d_se2_ = d_ee2_;
|
|
d_si2_ = d_xi2_;
|
|
d_sl2_ = d_xl2_;
|
|
d_sgh2_ = d_xgh2_;
|
|
d_sh2_ = d_xh2_;
|
|
d_se3_ = d_e3_;
|
|
d_si3_ = d_xi3_;
|
|
d_sl3_ = d_xl3_;
|
|
d_sgh3_ = d_xgh3_;
|
|
d_sh3_ = d_xh3_;
|
|
d_sl4_ = d_xl4_;
|
|
d_sgh4_ = d_xgh4_;
|
|
zcosg = zcosgl;
|
|
zsing = zsingl;
|
|
zcosi = zcosil;
|
|
zsini = zsinil;
|
|
zcosh = zcoshl * cosq + zsinhl * sinq;
|
|
zsinh = sinq * zcoshl - cosq * zsinhl;
|
|
zn = ZNL;
|
|
cc = C1L;
|
|
ze = ZEL;
|
|
zmo = zmol;
|
|
|
|
}
|
|
d_sse_ += se;
|
|
d_ssi_ += si;
|
|
d_ssl_ += sl;
|
|
d_ssg_ += sgh - cosiq * shdq;
|
|
d_ssh_ += shdq;
|
|
|
|
/*
|
|
* geopotential resonance initialization for 12 hour orbits
|
|
*/
|
|
bool resonance_flag = false;
|
|
bool synchronous_flag = false;
|
|
bool initialize_integrator = true;
|
|
|
|
if (RecoveredMeanMotion() < 0.0052359877 && RecoveredMeanMotion() > 0.0034906585) {
|
|
|
|
if (RecoveredMeanMotion() < 8.26e-3 || RecoveredMeanMotion() > 9.24e-3 || Eccentricity() < 0.5) {
|
|
initialize_integrator = false;
|
|
} else {
|
|
/*
|
|
* geopotential resonance initialization for 12 hour orbits
|
|
*/
|
|
resonance_flag = true;
|
|
|
|
double eoc = Eccentricity() * eqsq;
|
|
|
|
double g211;
|
|
double g310;
|
|
double g322;
|
|
double g410;
|
|
double g422;
|
|
double g520;
|
|
|
|
double g201 = -0.306 - (Eccentricity() - 0.64) * 0.440;
|
|
|
|
if (Eccentricity() <= 0.65) {
|
|
g211 = 3.616 - 13.247 * Eccentricity() + 16.290 * eqsq;
|
|
g310 = -19.302 + 117.390 * Eccentricity() - 228.419 * eqsq + 156.591 * eoc;
|
|
g322 = -18.9068 + 109.7927 * Eccentricity() - 214.6334 * eqsq + 146.5816 * eoc;
|
|
g410 = -41.122 + 242.694 * Eccentricity() - 471.094 * eqsq + 313.953 * eoc;
|
|
g422 = -146.407 + 841.880 * Eccentricity() - 1629.014 * eqsq + 1083.435 * eoc;
|
|
g520 = -532.114 + 3017.977 * Eccentricity() - 5740 * eqsq + 3708.276 * eoc;
|
|
} else {
|
|
g211 = -72.099 + 331.819 * Eccentricity() - 508.738 * eqsq + 266.724 * eoc;
|
|
g310 = -346.844 + 1582.851 * Eccentricity() - 2415.925 * eqsq + 1246.113 * eoc;
|
|
g322 = -342.585 + 1554.908 * Eccentricity() - 2366.899 * eqsq + 1215.972 * eoc;
|
|
g410 = -1052.797 + 4758.686 * Eccentricity() - 7193.992 * eqsq + 3651.957 * eoc;
|
|
g422 = -3581.69 + 16178.11 * Eccentricity() - 24462.77 * eqsq + 12422.52 * eoc;
|
|
|
|
if (Eccentricity() <= 0.715) {
|
|
g520 = 1464.74 - 4664.75 * Eccentricity() + 3763.64 * eqsq;
|
|
} else {
|
|
g520 = -5149.66 + 29936.92 * Eccentricity() - 54087.36 * eqsq + 31324.56 * eoc;
|
|
}
|
|
}
|
|
|
|
double g533;
|
|
double g521;
|
|
double g532;
|
|
|
|
if (Eccentricity() < 0.7) {
|
|
g533 = -919.2277 + 4988.61 * Eccentricity() - 9064.77 * eqsq + 5542.21 * eoc;
|
|
g521 = -822.71072 + 4568.6173 * Eccentricity() - 8491.4146 * eqsq + 5337.524 * eoc;
|
|
g532 = -853.666 + 4690.25 * Eccentricity() - 8624.77 * eqsq + 5341.4 * eoc;
|
|
} else {
|
|
g533 = -37995.78 + 161616.52 * Eccentricity() - 229838.2 * eqsq + 109377.94 * eoc;
|
|
g521 = -51752.104 + 218913.95 * Eccentricity() - 309468.16 * eqsq + 146349.42 * eoc;
|
|
g532 = -40023.88 + 170470.89 * Eccentricity() - 242699.48 * eqsq + 115605.82 * eoc;
|
|
}
|
|
|
|
double sini2 = siniq * siniq;
|
|
double f220 = 0.75 * (1.0 + 2.0 * cosiq + cosq2);
|
|
double f221 = 1.5 * sini2;
|
|
double f321 = 1.875 * siniq * (1.0 - 2.0 * cosiq - 3.0 * cosq2);
|
|
double f322 = -1.875 * siniq * (1.0 + 2.0 * cosiq - 3.0 * cosq2);
|
|
double f441 = 35.0 * sini2 * f220;
|
|
double f442 = 39.3750 * sini2 * sini2;
|
|
double f522 = 9.84375 * siniq * (sini2 * (1.0 - 2.0 * cosiq - 5.0 * cosq2)
|
|
+ 0.33333333 * (-2.0 + 4.0 * cosiq + 6.0 * cosq2));
|
|
double f523 = siniq * (4.92187512 * sini2 * (-2.0 - 4.0 * cosiq + 10.0 * cosq2)
|
|
+ 6.56250012 * (1.0 + 2.0 * cosiq - 3.0 * cosq2));
|
|
double f542 = 29.53125 * siniq * (2.0 - 8.0 * cosiq + cosq2 *
|
|
(-12.0 + 8.0 * cosiq + 10.0 * cosq2));
|
|
double f543 = 29.53125 * siniq * (-2.0 - 8.0 * cosiq + cosq2 *
|
|
(12.0 + 8.0 * cosiq - 10.0 * cosq2));
|
|
xno2 = RecoveredMeanMotion() * RecoveredMeanMotion();
|
|
ainv2 = aqnv * aqnv;
|
|
temp1 = 3.0 * xno2 * ainv2;
|
|
temp = temp1 * ROOT22;
|
|
d2201 = temp * f220 * g201;
|
|
d2211 = temp * f221 * g211;
|
|
temp1 = temp1 * aqnv;
|
|
temp = temp1 * ROOT32;
|
|
d3210 = temp * f321 * g310;
|
|
d3222 = temp * f322 * g322;
|
|
temp1 = temp1 * aqnv;
|
|
temp = 2.0 * temp1 * ROOT44;
|
|
d4410 = temp * f441 * g410;
|
|
d4422 = temp * f442 * g422;
|
|
temp1 = temp1 * aqnv;
|
|
temp = temp1 * ROOT52;
|
|
d5220 = temp * f522 * g520;
|
|
d5232 = temp * f523 * g532;
|
|
temp = 2.0 * temp1 * ROOT54;
|
|
d5421 = temp * f542 * g521;
|
|
d5433 = temp * f543 * g533;
|
|
xlamo = MeanAnomoly() + AscendingNode() + AscendingNode() - gsto_ - gsto_;
|
|
bfact = xlldot + xnodot + xnodot - THDT - THDT;
|
|
bfact = bfact + ssl + ssh + ssh;
|
|
}
|
|
} else {
|
|
/*
|
|
* 24h synchronous resonance terms initialization
|
|
*/
|
|
resonance_flag = true;
|
|
synchronous_flag = true;
|
|
|
|
double g200 = 1.0 + eqsq * (-2.5 + 0.8125 * eqsq);
|
|
double g310 = 1.0 + 2.0 * eqsq;
|
|
double g300 = 1.0 + eqsq * (-6.0 + 6.60937 * eqsq);
|
|
double f220 = 0.75 * (1.0 + cosiq) * (1.0 + cosiq);
|
|
double f311 = 0.9375 * siniq * siniq * (1.0 + 3.0 * cosiq) - 0.75 * (1.0 + cosiq);
|
|
double f330 = 1.0 + cosiq;
|
|
f330 = 1.875 * f330 * f330 * f330;
|
|
d_del1_ = 3.0 * RecoveredMeanMotion() * RecoveredMeanMotion() * aqnv * aqnv;
|
|
d_del2_ = 2.0 * del1 * f220 * g200 * Q22;
|
|
d_del3_ = 3.0 * del1 * f330 * g300 * Q33 * aqnv;
|
|
d_del1_ = del1 * f311 * g310 * Q31 * aqnv;
|
|
d_fasx2_ = 0.13130908;
|
|
d_fasx4_ = 2.8843198;
|
|
d_fasx6_ = 0.37448087;
|
|
d_xlamo_ = MeanAnomoly() + AscendingNode() + ArgumentPerigee() - gsto_;
|
|
d_bfact_ = xlldot + xpidot - THDT;
|
|
d_bfact_ = bfact + ssl + ssg + ssh;
|
|
d_xfact_ = bfact - RecoveredMeanMotion();
|
|
}
|
|
|
|
if (initialize_integrator) {
|
|
/*
|
|
* initialize integrator
|
|
*/
|
|
d_xli_ = d_xlamo_;
|
|
d_xni_ = RecoveredMeanMotion();
|
|
d_atime_ = 0.0;
|
|
d_stepp_ = 720.0;
|
|
d_stepn_ = -720.0;
|
|
d_step2_ = 259200.0;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
SUBROUTINE DEEP
|
|
COMMON / E1 / XMO, XNODEO, OMEGAO, EO, XINCL, XNO, XNDT2O,
|
|
1 XNDD6O, BSTAR, X, Y, Z, XDOT, YDOT, ZDOT, EPOCH, DS50
|
|
COMMON / C1 / CK2, CK4, E6A, QOMS2T, S, TOTHRD,
|
|
1 XJ3, XKE, XKMPER, XMNPDA, AE
|
|
COMMON / C2 / DE2RA, PI, PIO2, TWOPI, X3PIO2
|
|
DOUBLE PRECISION EPOCH, DS50
|
|
DOUBLE PRECISION
|
|
* DAY, PREEP, XNODCE, ATIME, DELT, SAVTSN, STEP2, STEPN, STEPP
|
|
|
|
double ZNS = 1.19459E-5;
|
|
double C1SS = 2.9864797E-6;
|
|
double ZES = 0.01675;
|
|
double ZNL = 1.5835218E-4;
|
|
double C1L = 4.7968065E-7;
|
|
double ZEL = 0.05490;
|
|
double ZCOSIS = 0.91744867;
|
|
double ZSINI = 0.39785416;
|
|
double ZSINGS = -0.98088458;
|
|
double ZCOSGS = 0.1945905;
|
|
double ZCOSHS = 1.0;
|
|
double ZSINHS = 0.0;
|
|
double Q22 = 1.7891679E-6;
|
|
double Q31 = 2.1460748E-6;
|
|
double Q33 = 2.2123015E-7;
|
|
double G22 = 5.7686396;
|
|
double G32 = 0.95240898;
|
|
double G44 = 1.8014998;
|
|
double G52 = 1.0508330;
|
|
double G54 = 4.4108898;
|
|
double ROOT22 = 1.7891679E-6;
|
|
double ROOT32 = 3.7393792E-7;
|
|
double ROOT44 = 7.3636953E-9;
|
|
double ROOT52 = 1.1428639E-7;
|
|
double ROOT54 = 2.1765803E-9;
|
|
double THDT = 4.3752691E-3;
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
* ENTRANCE FOR DEEP SPACE SECULAR EFFECTS
|
|
*/
|
|
ENTRY DPSEC(XLL, OMGASM, XNODES, EM, XINC, XN, T)
|
|
XLL = XLL + SSL*T
|
|
OMGASM = OMGASM + SSG*T
|
|
XNODES = XNODES + SSH*T
|
|
EM = EO + SSE*T
|
|
XINC = XINCL + SSI * T
|
|
IF(XINC .GE. 0.) GO TO 90
|
|
XINC = -XINC
|
|
XNODES = XNODES + PI
|
|
OMGASM = OMGASM - PI
|
|
90 IF(IRESFL .EQ. 0) RETURN
|
|
100 IF(ATIME.EQ.0.D0) GO TO 170
|
|
IF(T.GE.(0.D0).AND.ATIME.LT.(0.D0)) GO TO 170
|
|
IF(T.LT.(0.D0).AND.ATIME.GE.(0.D0)) GO TO 170
|
|
105 IF(DABS(T).GE.DABS(ATIME)) GO TO 120
|
|
DELT = STEPP
|
|
IF(T.GE.0.D0) DELT = STEPN
|
|
110 ASSIGN 100 TO IRET
|
|
GO TO 160
|
|
120 DELT = STEPN
|
|
IF(T.GT.0.D0) DELT = STEPP
|
|
125 IF(DABS(T - ATIME).LT.STEPP) GO TO 130
|
|
ASSIGN 125 TO IRET
|
|
GO TO 160
|
|
130 FT = T - ATIME
|
|
ASSIGN 140 TO IRETN
|
|
GO TO 150
|
|
140 XN = XNI + XNDOT * FT + XNDDT * FT * FT * 0.5
|
|
XL = XLI + XLDOT * FT + XNDOT * FT * FT * 0.5
|
|
TEMP = -XNODES + THGR + T*THDT
|
|
XLL = XL - OMGASM + TEMP
|
|
IF(ISYNFL.EQ.0) XLL = XL + TEMP + TEMP
|
|
RETURN
|
|
C
|
|
C DOT TERMS CALCULATED
|
|
C
|
|
150 IF(ISYNFL.EQ.0) GO TO 152
|
|
XNDOT = DEL1 * SIN(XLI - FASX2) + DEL2 * SIN(2. * (XLI - FASX4))
|
|
1 + DEL3 * SIN(3. * (XLI - FASX6))
|
|
XNDDT = DEL1 * COS(XLI - FASX2)
|
|
* +2. * DEL2 * COS(2. * (XLI - FASX4))
|
|
* +3. * DEL3 * COS(3. * (XLI - FASX6))
|
|
GO TO 154
|
|
152 XOMI = OMEGAQ + OMGDT * ATIME
|
|
65
|
|
X2OMI = XOMI + XOMI
|
|
X2LI = XLI + XLI
|
|
XNDOT = D2201 * SIN(X2OMI + XLI - G22)
|
|
* +D2211 * SIN(XLI - G22)
|
|
* +D3210 * SIN(XOMI + XLI - G32)
|
|
* +D3222 * SIN(-XOMI + XLI - G32)
|
|
* +D4410 * SIN(X2OMI + X2LI - G44)
|
|
* +D4422 * SIN(X2LI - G44)
|
|
* +D5220 * SIN(XOMI + XLI - G52)
|
|
* +D5232 * SIN(-XOMI + XLI - G52)
|
|
* +D5421 * SIN(XOMI + X2LI - G54)
|
|
* +D5433 * SIN(-XOMI + X2LI - G54)
|
|
XNDDT = D2201 * COS(X2OMI + XLI - G22)
|
|
* +D2211 * COS(XLI - G22)
|
|
* +D3210 * COS(XOMI + XLI - G32)
|
|
* +D3222 * COS(-XOMI + XLI - G32)
|
|
* +D5220 * COS(XOMI + XLI - G52)
|
|
* +D5232 * COS(-XOMI + XLI - G52)
|
|
* +2. * (D4410 * COS(X2OMI + X2LI - G44)
|
|
* +D4422 * COS(X2LI - G44)
|
|
* +D5421 * COS(XOMI + X2LI - G54)
|
|
* +D5433 * COS(-XOMI + X2LI - G54))
|
|
154 XLDOT = XNI + XFACT
|
|
XNDDT = XNDDT * XLDOT
|
|
GO TO IRETN
|
|
C
|
|
C INTEGRATOR
|
|
C
|
|
160 ASSIGN 165 TO IRETN
|
|
GO TO 150
|
|
165 XLI = XLI + XLDOT * DELT + XNDOT*STEP2
|
|
XNI = XNI + XNDOT * DELT + XNDDT*STEP2
|
|
ATIME = ATIME + DELT
|
|
GO TO IRET
|
|
C
|
|
C EPOCH RESTART
|
|
C
|
|
170 IF(T.GE.0.D0) GO TO 175
|
|
DELT = STEPN
|
|
GO TO 180
|
|
175 DELT = STEPP
|
|
180 ATIME = 0.D0
|
|
XNI = XNQ
|
|
XLI = XLAMO
|
|
GO TO 125
|
|
|
|
|
|
|
|
|
|
/*
|
|
* ENTRANCES FOR LUNAR-SOLAR PERIODICS
|
|
*/
|
|
ENTRY DPPER(EM, XINC, OMGASM, XNODES, XLL)
|
|
SINIS = SIN(XINC)
|
|
COSIS = COS(XINC)
|
|
IF(DABS(SAVTSN - T).LT.(30.D0)) GO TO 210
|
|
SAVTSN = T
|
|
ZM = ZMOS + ZNS * T
|
|
205 ZF = ZM + 2. * ZES * SIN(ZM)
|
|
SINZF = SIN(ZF)
|
|
F2 = .5 * SINZF * SINZF - .25
|
|
F3 = -.5 * SINZF * COS(ZF)
|
|
SES = SE2 * F2 + SE3*F3
|
|
SIS = SI2 * F2 + SI3*F3
|
|
SLS = SL2 * F2 + SL3 * F3 + SL4*SINZF
|
|
SGHS = SGH2 * F2 + SGH3 * F3 + SGH4*SINZF
|
|
SHS = SH2 * F2 + SH3*F3
|
|
ZM = ZMOL + ZNL*T
|
|
ZF = ZM + 2. * ZEL * SIN(ZM)
|
|
SINZF = SIN(ZF)
|
|
F2 = .5 * SINZF * SINZF - .25
|
|
F3 = -.5 * SINZF * COS(ZF)
|
|
SEL = EE2 * F2 + E3*F3
|
|
SIL = XI2 * F2 + XI3*F3
|
|
SLL = XL2 * F2 + XL3 * F3 + XL4*SINZF
|
|
SGHL = XGH2 * F2 + XGH3 * F3 + XGH4*SINZF
|
|
SHL = XH2 * F2 + XH3*F3
|
|
PE = SES + SEL
|
|
PINC = SIS + SIL
|
|
PL = SLS + SLL
|
|
210 PGH = SGHS + SGHL
|
|
PH = SHS + SHL
|
|
XINC = XINC + PINC
|
|
EM = EM + PE
|
|
IF(XQNCL.LT.(.2)) GO TO 220
|
|
GO TO 218
|
|
C
|
|
C APPLY PERIODICS DIRECTLY
|
|
C
|
|
218 PH = PH / SINIQ
|
|
PGH = PGH - COSIQ*PH
|
|
OMGASM = OMGASM + PGH
|
|
XNODES = XNODES + PH
|
|
XLL = XLL + PL
|
|
GO TO 230
|
|
C
|
|
C APPLY PERIODICS WITH LYDDANE MODIFICATION
|
|
C
|
|
220 SINOK = SIN(XNODES)
|
|
67
|
|
COSOK = COS(XNODES)
|
|
ALFDP = SINIS*SINOK
|
|
BETDP = SINIS*COSOK
|
|
DALF = PH * COSOK + PINC * COSIS*SINOK
|
|
DBET = -PH * SINOK + PINC * COSIS*COSOK
|
|
ALFDP = ALFDP + DALF
|
|
BETDP = BETDP + DBET
|
|
XLS = XLL + OMGASM + COSIS*XNODES
|
|
DLS = PL + PGH - PINC * XNODES*SINIS
|
|
XLS = XLS + DLS
|
|
XNODES = ACTAN(ALFDP, BETDP)
|
|
XLL = XLL + PL
|
|
OMGASM = XLS - XLL - COS(XINC) * XNODES
|
|
230 CONTINUE
|
|
RETURN
|
|
END
|
|
#endif
|