#include "SGDP4.h" #include "SatelliteException.h" #include SGDP4::SGDP4(void) { first_run_ = true; } SGDP4::~SGDP4(void) { } void SGDP4::SetTle(const Tle& tle) { /* * extract and format tle data */ mean_anomoly_ = tle.GetField(Tle::FLD_M, Tle::U_RAD); ascending_node_ = tle.GetField(Tle::FLD_RAAN, Tle::U_RAD); argument_perigee_ = tle.GetField(Tle::FLD_ARGPER, Tle::U_RAD); eccentricity_ = tle.GetField(Tle::FLD_E); inclination_ = tle.GetField(Tle::FLD_I, Tle::U_RAD); mean_motion_ = tle.GetField(Tle::FLD_MMOTION) / (1440.0 / Globals::TWOPI()); bstar_ = tle.GetField(Tle::FLD_BSTAR); /* * generate julian date for tle epoch */ epoch_ = tle.GetEpoch(); /* * recover original mean motion (xnodp) and semimajor axis (aodp) * from input elements */ double a1 = pow(Globals::XKE() / MeanMotion(), Globals::TOTHRD()); cosio_ = cos(Inclination()); double theta2 = cosio_ * cosio_; x3thm1_ = 3.0 * theta2 - 1.0; double eosq = Eccentricity() * Eccentricity(); double betao2 = 1.0 - eosq; double betao = sqrt(betao2); double del1 = 1.5 * Globals::CK2() * x3thm1_ / (a1 * a1 * betao * betao2); double ao = a1 * (1.0 - del1 * (0.5 * Globals::TOTHRD() + del1 * (1.0 + 134.0 / 81.0 * del1))); double delo = 1.5 * Globals::CK2() * x3thm1_ / (ao * ao * betao * betao2); recovered_mean_motion_ = MeanMotion() / (1.0 + delo); recovered_semi_major_axis_ = ao / (1.0 - delo); /* * find perigee and period */ perigee_ = (RecoveredSemiMajorAxis() * (1.0 - Eccentricity()) - Globals::AE()) * Globals::XKMPER(); period_ = Globals::TWOPI() / RecoveredMeanMotion(); Initialize(theta2, betao2, betao); } void SGDP4::Initialize(const double& theta2, const double& betao2, const double& betao) { cosio_ = 0.0; sinio_ = 0.0; eta_ = 0.0; coef1_ = 0.0; c1_ = 0.0; a3ovk2_ = 0.0; x1mth2_ = 0.0; c4_ = 0.0; c5_ = 0.0; xmdot_ = 0.0; omgdot_ = 0.0; xnodot_ = 0.0; xnodcf_ = 0.0; t2cof_ = 0.0; xlcof_ = 0.0; aycof_ = 0.0; x7thm1_ = 0.0; omgcof_ = 0.0; xmcof_ = 0.0; delmo_ = 0.0; sinmo_ = 0.0; d2_ = 0.0; d3_ = 0.0; d4_ = 0.0; t3cof_ = 0.0; t4cof_ = 0.0; t5cof_ = 0.0; gsto_ = 0.0; if (Period() >= 225.0) { use_deep_space_ = true; } else { use_deep_space_ = false; use_simple_model_ = false; /* * for perigee less than 220 kilometers, the simple_model flag is set and * the equations are truncated to linear variation in sqrt a and * quadratic variation in mean anomly. also, the c3 term, the * delta omega term and the delta m term are dropped */ if (Perigee() < 220.0) { use_simple_model_ = true; } } double s4_ = Globals::S(); double qoms24_ = Globals::QOMS2T(); /* * for perigee below 156km, the values of * s4 and qoms2t are altered */ if (Perigee() < 156.0) { s4_ = Perigee() - 78.0; if (Perigee() <= 98.0) { s4_ = 20.0; } qoms24_ = pow((120.0 - s4_) * Globals::AE() / Globals::XKMPER(), 4.0); s4_ = s4_ / Globals::XKMPER() + Globals::AE(); } double pinvsq = 1.0 / (RecoveredSemiMajorAxis() * RecoveredSemiMajorAxis() * betao2 * betao2); double tsi = 1.0 / (RecoveredSemiMajorAxis() - s4_); eta_ = RecoveredSemiMajorAxis() * Eccentricity() * tsi; double etasq = eta_ * eta_; double eeta = Eccentricity() * eta_; double psisq = fabs(1.0 - etasq); double coef = qoms24_ * pow(tsi, 4.0); coef1_ = coef / pow(psisq, 3.5); double c2 = coef1_ * RecoveredMeanMotion() * (RecoveredSemiMajorAxis() * (1.0 + 1.5 * etasq + eeta * (4.0 + etasq)) + 0.75 * Globals::CK2() * tsi / psisq * x3thm1_ * (8.0 + 3.0 * etasq * (8.0 + etasq))); c1_ = BStar() * c2; a3ovk2_ = -Globals::XJ3() / Globals::CK2() * pow(Globals::AE(), 3.0); x1mth2_ = 1.0 - theta2; c4_ = 2.0 * RecoveredMeanMotion() * coef1_ * RecoveredSemiMajorAxis() * betao2 * (eta_ * (2.0 + 0.5 * etasq) + Eccentricity() * (0.5 + 2.0 * etasq) - 2.0 * Globals::CK2() * tsi / (RecoveredSemiMajorAxis() * psisq) * (-3.0 * x3thm1_ * (1.0 - 2.0 * eeta + etasq * (1.5 - 0.5 * eeta)) + 0.75 * x1mth2_ * (2.0 * etasq - eeta * (1.0 + etasq)) * cos(2.0 * ArgumentPerigee()))); double theta4 = theta2 * theta2; double temp1 = 3.0 * Globals::CK2() * pinvsq * RecoveredMeanMotion(); double temp2 = temp1 * Globals::CK2() * pinvsq; double temp3 = 1.25 * Globals::CK4() * pinvsq * pinvsq * RecoveredMeanMotion(); xmdot_ = RecoveredMeanMotion() + 0.5 * temp1 * betao * x3thm1_ + 0.0625 * temp2 * betao * (13.0 - 78.0 * theta2 + 137.0 * theta4); double x1m5th = 1.0 - 5.0 * theta2; omgdot_ = -0.5 * temp1 * x1m5th + 0.0625 * temp2 * (7.0 - 114.0 * theta2 + 395.0 * theta4) + temp3 * (3.0 - 36.0 * theta2 + 49.0 * theta4); double xhdot1_ = -temp1 * cosio_; xnodot_ = xhdot1_ + (0.5 * temp2 * (4.0 - 19.0 * theta2) + 2.0 * temp3 * (3.0 - 7.0 * theta2)) * cosio_; xnodcf_ = 3.5 * betao2 * xhdot1_ * c1_; t2cof_ = 1.5 * c1_; if (fabs(cosio_ + 1.0) > 1.5e-12) xlcof_ = 0.125 * a3ovk2_ * sinio_ * (3.0 + 5.0 * cosio_) / (1.0 + cosio_); else xlcof_ = 0.125 * a3ovk2_ * sinio_ * (3.0 + 5.0 * cosio_) / 1.5e-12; aycof_ = 0.25 * a3ovk2_ * sinio_; x7thm1_ = 7.0 * theta2 - 1.0; if (!use_deep_space_) { double c3 = 0.0; if (Eccentricity() > 1.0e-4) { c3 = coef * tsi * a3ovk2_ * RecoveredMeanMotion() * Globals::AE() * sinio_ / Eccentricity(); } c5_ = 2.0 * coef1_ * RecoveredSemiMajorAxis() * betao2 * (1.0 + 2.75 * (etasq + eeta) + eeta * etasq); omgcof_ = BStar() * c3 * cos(ArgumentPerigee()); xmcof_ = 0.0; if (Eccentricity() > 1.0e-4) xmcof_ = -Globals::TOTHRD() * coef * BStar() * Globals::AE() / eeta; delmo_ = pow(1.0 + eta_ * (cos(MeanAnomoly())), 3.0); sinmo_ = sin(MeanAnomoly()); } if (!use_simple_model_) { double c1sq = c1_ * c1_; d2_ = 4.0 * RecoveredSemiMajorAxis() * tsi * c1sq; double temp = d2_ * tsi * c1_ / 3.0; d3_ = (17.0 * RecoveredSemiMajorAxis() + s4_) * temp; d4_ = 0.5 * temp * RecoveredSemiMajorAxis() * tsi * (221.0 * RecoveredSemiMajorAxis() + 31.0 * s4_) * c1_; t3cof_ = d2_ + 2.0 * c1sq; t4cof_ = 0.25 * (3.0 * d3_ + c1_ * (12.0 * d2_ + 10.0 * c1sq)); t5cof_ = 0.2 * (3.0 * d4_ + 12.0 * c1_ * d3_ + 6.0 * d2_ * d2_ + 15.0 * c1sq * (2.0 * d2_ + c1sq)); } else if (use_deep_space_) { gsto_ = Epoch().ToGMST(); double sing = sin(ArgumentPerigee()); double cosg = cos(ArgumentPerigee()); //CALL DPINIT(EOSQ,SINIO,COSIO,BETAO,AODP,THETA2, // SING,COSG,BETAO2,XMDOT,OMGDOT,XNODOT,XNODP) } first_run_ = false; } void SGDP4::FindPosition(double tsince) { struct TleData tle_data_tsince_; memset(&tle_data_tsince_, 0, sizeof (tle_data_tsince_)); tle_data_tsince_.bstar = BStar(); tle_data_tsince_.eo = Eccentricity(); tle_data_tsince_.omega = ArgumentPerigee(); tle_data_tsince_.xincl = Inclination(); tle_data_tsince_.xmo = MeanAnomoly(); tle_data_tsince_.xno = RecoveredMeanMotion(); tle_data_tsince_.xnodeo = AscendingNode(); tle_data_tsince_.epoch = Epoch(); double xl = 0.0; double a = 0.0; /* * update for secular gravity and atmospheric drag */ double xmdf = MeanAnomoly() + xmdot_ * tsince; double omgadf = ArgumentPerigee() + omgdot_ * tsince; double xnoddf = tle_data_tsince_.xnodeo + xnodot_ * tsince; double tsq = tsince * tsince; double xnode = xnoddf + xnodcf_ * tsq; double tempa = 1.0 - c1_ * tsince; double tempe = tle_data_tsince_.bstar * c4_ * tsince; double templ = t2cof_ * tsq; tle_data_tsince_.omega = omgadf; if (use_deep_space_) { double xn = RecoveredMeanMotion(); #if 0 CALL DPSEC(xmdf, tle_data_tsince_.omega, XNODE, tle_data_tsince_.eo, tle_data_tsince_.xincl, xn, tsince); #endif a = pow(Globals::XKE() / xn, Globals::TOTHRD()) * pow(tempa, 2.0); tle_data_tsince_.eo -= tempe; double xmam = xmdf + RecoveredMeanMotion() * templ; #if 0 CALL DPPER(tle_data_tsince_.eo, tle_data_tsince_.xincl, tle_data_tsince_.omega, tle_data_tsince_.xnodeo, xmam); #endif xl = xmam + tle_data_tsince_.omega + xnode; /* * re-compute the perturbed values */ sinio_ = sin(tle_data_tsince_.xincl); cosio_ = cos(tle_data_tsince_.xincl); double theta2 = cosio_ * cosio_; x3thm1_ = 3.0 * theta2 - 1.0; x1mth2_ = 1.0 - theta2; x7thm1_ = 7.0 * theta2 - 1.0; if (fabs(cosio_ + 1.0) > 1.5e-12) xlcof_ = 0.125 * a3ovk2_ * sinio_ * (3.0 + 5.0 * cosio_) / (1.0 + cosio_); else xlcof_ = 0.125 * a3ovk2_ * sinio_ * (3.0 + 5.0 * cosio_) / 1.5e-12; aycof_ = 0.25 * a3ovk2_ * sinio_; } else { double xmp = xmdf; if (!use_simple_model_) { double delomg = omgcof_ * tsince; double delm = xmcof_ * (pow(1.0 + eta_ * cos(xmdf), 3.0) - delmo_); double temp1 = delomg + delm; xmp = xmdf + temp1; tle_data_tsince_.omega -= temp1; double tcube = tsq * tsince; double tfour = tsince * tcube; tempa -= d2_ * tsq - d3_ * tcube - d4_ * tfour; tempe += tle_data_tsince_.bstar * c5_ * (sin(xmp) - sinmo_); templ += t3cof_ * tcube + tfour * (t4cof_ + tsince * t5cof_); } a = RecoveredSemiMajorAxis() * pow(tempa, 2.0); tle_data_tsince_.eo = Eccentricity() - tempe; xl = xmp + tle_data_tsince_.omega + xnode + RecoveredMeanMotion() * templ; } double beta = sqrt(1.0 - tle_data_tsince_.eo * tle_data_tsince_.eo); double xn = Globals::XKE() / pow(a, 1.5); /* * long period periodics */ double axn; double xll; double aynl; double xlt; double ayn; { axn = tle_data_tsince_.eo * cos(tle_data_tsince_.omega); double temp1 = 1.0 / (a * beta * beta); xll = temp1 * xlcof_ * axn; aynl = temp1 * aycof_; xlt = xl + xll; ayn = tle_data_tsince_.eo * sin(tle_data_tsince_.omega) + aynl; } /* * solve keplers equation */ double capu = fmod(xlt - xnode, Globals::TWOPI()); double epw = capu; double sinepw = 0.0; double cosepw = 0.0; double ecose = 0.0; double esine = 0.0; bool kepler_running = true; for (int i = 0; i < 10 && kepler_running; i++) { sinepw = sin(epw); cosepw = cos(epw); ecose = axn * cosepw + ayn * sinepw; esine = axn * sinepw - ayn * cosepw; double f = capu - epw + esine; if (fabs(f) < 1.0e-12) { kepler_running = false; } else { /* * 1st order Newton-Raphson correction */ double df = 1.0 - ecose; double nr = f / df; /* * Newton-Raphson correction of -F/DF */ epw += nr; } } /* * short period preliminary quantities */ double pl; double r; double betal; double rdot; double rfdot; double u; double sin2u; double cos2u; { double elsq = axn * axn + ayn * ayn; double temp1 = 1.0 - elsq; pl = a * temp1; r = a * (1.0 - ecose); betal = sqrt(temp1); double temp2 = 1.0 / r; double temp3 = a * temp2; double temp4 = 1.0 / (1.0 + betal); rdot = Globals::XKE() * sqrt(a) * esine * temp2; rfdot = Globals::XKE() * sqrt(pl) * temp2; double cosu = temp3 * (cosepw - axn + ayn * esine * temp4); double sinu = temp3 * (sinepw - ayn - axn * esine * temp4); u = atan2(sinu, cosu); sin2u = 2.0 * sinu * cosu; cos2u = 2.0 * cosu * cosu - 1.0; } /* * update for short periodics */ double rk; double uk; double xnodek; double xinck; double rdotk; double rfdotk; { double temp1 = 1.0 / pl; double temp2 = Globals::CK2() * temp1; double temp3 = temp2 * temp1; rk = r * (1.0 - 1.5 * temp3 * betal * x3thm1_) + 0.5 * temp2 * x1mth2_ * cos2u; uk = u - 0.25 * temp3 * x7thm1_ * sin2u; xnodek = xnode + 1.5 * temp3 * cosio_ * sin2u; xinck = tle_data_tsince_.xincl + 1.5 * temp3 * cosio_ * sinio_ * cos2u; rdotk = rdot - xn * temp2 * x1mth2_ * sin2u; rfdotk = rfdot + xn * temp2 * (x1mth2_ * cos2u + 1.5 * x3thm1_); } /* * orientation vectors */ double sinuk = sin(uk); double cosuk = cos(uk); double sinik = sin(xinck); double cosik = cos(xinck); double sinnok = sin(xnodek); double cosnok = cos(xnodek); double xmx = -sinnok * cosik; double xmy = cosnok * cosik; double ux = xmx * sinuk + cosnok * cosuk; double uy = xmy * sinuk + sinnok * cosuk; double uz = sinik * sinuk; double vx = xmx * cosuk - cosnok * sinuk; double vy = xmy * cosuk - sinnok * sinuk; double vz = sinik * cosuk; /* * position and velocity */ double x = rk * ux * Globals::XKMPER(); double y = rk * uy * Globals::XKMPER(); double z = rk * uz * Globals::XKMPER(); double xdot = (rdotk * ux + rfdotk * vx) * Globals::XKMPER() / 60.0; double ydot = (rdotk * uy + rfdotk * vy) * Globals::XKMPER() / 60.0; double zdot = (rdotk * uz + rfdotk * vz) * Globals::XKMPER() / 60.0; } #if 0 SUBROUTINE DEEP COMMON / E1 / XMO, XNODEO, OMEGAO, EO, XINCL, XNO, XNDT2O, 1 XNDD6O, BSTAR, X, Y, Z, XDOT, YDOT, ZDOT, EPOCH, DS50 COMMON / C1 / CK2, CK4, E6A, QOMS2T, S, TOTHRD, 1 XJ3, XKE, XKMPER, XMNPDA, AE COMMON / C2 / DE2RA, PI, PIO2, TWOPI, X3PIO2 DOUBLE PRECISION EPOCH, DS50 DOUBLE PRECISION * DAY, PREEP, XNODCE, ATIME, DELT, SAVTSN, STEP2, STEPN, STEPP double ZNS = 1.19459E-5; double C1SS = 2.9864797E-6; double ZES = .01675; double ZNL = 1.5835218E-4; double C1L = 4.7968065E-7; double ZEL = .05490; double ZCOSIS = .91744867; double ZSINI = .39785416; double ZSINGS = -.98088458; double ZCOSGS = .1945905; double ZCOSHS = 1.0; double ZSINHS = 0.0; double Q22 = 1.7891679E-6; double Q31 = 2.1460748E-6; double Q33 = 2.2123015E-7; double G22 = 5.7686396; double G32 = 0.95240898; double G44 = 1.8014998; double G52 = 1.0508330; double G54 = 4.4108898; double ROOT22 = 1.7891679E-6; double ROOT32 = 3.7393792E-7; double ROOT44 = 7.3636953E-9; double ROOT52 = 1.1428639E-7; double ROOT54 = 2.1765803E-9; double THDT = 4.3752691E-3; /* * ENTRANCE FOR DEEP SPACE INITIALIZATION */ ENTRY DPINIT(EQSQ, SINIQ, COSIQ, RTEQSQ, AO, COSQ2, SINOMO, COSOMO, 1 BSQ, XLLDOT, OMGDT, XNODOT, XNODP) THGR = THETAG(EPOCH) EQ = EO XNQ = XNODP AQNV = 1. / AO XQNCL = XINCL XMAO = XMO XPIDOT = OMGDT + XNODOT SINQ = SIN(XNODEO) COSQ = COS(XNODEO) OMEGAQ = OMEGAO * INITIALIZE LUNAR SOLAR TERMS 5 DAY = DS50 + 18261.5D0 IF(DAY.EQ.PREEP) GO TO 10 PREEP = DAY XNODCE = 4.5236020 - 9.2422029E-4 * DAY 59 STEM = DSIN(XNODCE) CTEM = DCOS(XNODCE) ZCOSIL = .91375164 - .03568096 * CTEM ZSINIL = SQRT(1. - ZCOSIL*ZCOSIL) ZSINHL = .089683511 * STEM / ZSINIL ZCOSHL = SQRT(1. - ZSINHL*ZSINHL) C = 4.7199672 + .22997150 * DAY GAM = 5.8351514 + .0019443680 * DAY ZMOL = FMOD2P(C - GAM) ZX = .39785416 * STEM / ZSINIL ZY = ZCOSHL*CTEM + 0.91744867 * ZSINHL*STEM ZX = ACTAN(ZX, ZY) ZX = GAM + ZX - XNODCE ZCOSGL = COS(ZX) ZSINGL = SIN(ZX) ZMOS = 6.2565837D0 + .017201977D0*DAY ZMOS = FMOD2P(ZMOS) * DO SOLAR TERMS 10 LS = 0 SAVTSN = 1.D20 ZCOSG = ZCOSGS ZSING = ZSINGS ZCOSI = ZCOSIS ZSINI = ZSINIS ZCOSH = COSQ ZSINH = SINQ CC = C1SS ZN = ZNS ZE = ZES ZMO = ZMOS XNOI = 1. / XNQ ASSIGN 30 TO LS 20 A1 = ZCOSG*ZCOSH + ZSING*ZCOSI*ZSINH A3 = -ZSING*ZCOSH + ZCOSG*ZCOSI*ZSINH A7 = -ZCOSG*ZSINH + ZSING*ZCOSI*ZCOSH A8 = ZSING*ZSINI A9 = ZSING*ZSINH + ZCOSG*ZCOSI*ZCOSH A10 = ZCOSG*ZSINI A2 = COSIQ*A7 + SINIQ*A8 A4 = COSIQ*A9 + SINIQ*A10 A5 = -SINIQ*A7 + COSIQ*A8 A6 = -SINIQ*A9 + COSIQ*A10 C X1 = A1*COSOMO + A2*SINOMO X2 = A3*COSOMO + A4*SINOMO X3 = -A1*SINOMO + A2*COSOMO 60 X4 = -A3*SINOMO + A4*COSOMO X5 = A5*SINOMO X6 = A6*SINOMO X7 = A5*COSOMO X8 = A6*COSOMO C Z31 = 12. * X1*X1 - 3. * X3*X3 Z32 = 24. * X1*X2 - 6. * X3*X4 Z33 = 12. * X2*X2 - 3. * X4*X4 Z1 = 3. * (A1*A1 + A2*A2) + Z31*EQSQ Z2 = 6. * (A1*A3 + A2*A4) + Z32*EQSQ Z3 = 3. * (A3*A3 + A4*A4) + Z33*EQSQ Z11 = -6. * A1*A5 + EQSQ *(-24. * X1*X7 - 6. * X3*X5) Z12 = -6. * (A1*A6 + A3*A5) + EQSQ *(-24. * (X2*X7 + X1*X8) - 6. * (X3*X6 + X4*X5)) Z13 = -6. * A3*A6 + EQSQ *(-24. * X2*X8 - 6. * X4*X6) Z21 = 6. * A2*A5 + EQSQ *(24. * X1*X5 - 6. * X3*X7) Z22 = 6. * (A4*A5 + A2*A6) + EQSQ *(24. * (X2*X5 + X1*X6) - 6. * (X4*X7 + X3*X8)) Z23 = 6. * A4*A6 + EQSQ *(24. * X2*X6 - 6. * X4*X8) Z1 = Z1 + Z1 + BSQ*Z31 Z2 = Z2 + Z2 + BSQ*Z32 Z3 = Z3 + Z3 + BSQ*Z33 S3 = CC*XNOI S2 = -.5 * S3 / RTEQSQ S4 = S3*RTEQSQ S1 = -15. * EQ*S4 S5 = X1*X3 + X2*X4 S6 = X2*X3 + X1*X4 S7 = X2*X4 - X1*X3 SE = S1*ZN*S5 SI = S2*ZN*(Z11 + Z13) SL = -ZN*S3*(Z1 + Z3 - 14. - 6. * EQSQ) SGH = S4*ZN*(Z31 + Z33 - 6.) SH = -ZN*S2*(Z21 + Z23) IF(XQNCL.LT.5.2359877E-2) SH = 0.0 EE2 = 2. * S1*S6 E3 = 2. * S1*S7 XI2 = 2. * S2*Z12 XI3 = 2. * S2*(Z13 - Z11) XL2 = -2. * S3*Z2 XL3 = -2. * S3*(Z3 - Z1) XL4 = -2. * S3*(-21. - 9. * EQSQ) * ZE XGH2 = 2. * S4*Z32 XGH3 = 2. * S4*(Z33 - Z31) XGH4 = -18. * S4*ZE XH2 = -2. * S2*Z22 XH3 = -2. * S2*(Z23 - Z21) GO TO LS 61 * DO LUNAR TERMS 30 SSE = SE SSI = SI SSL = SL SSH = SH / SINIQ SSG = SGH - COSIQ*SSH SE2 = EE2 SI2 = XI2 SL2 = XL2 SGH2 = XGH2 SH2 = XH2 SE3 = E3 SI3 = XI3 SL3 = XL3 SGH3 = XGH3 SH3 = XH3 SL4 = XL4 SGH4 = XGH4 LS = 1 ZCOSG = ZCOSGL ZSING = ZSINGL ZCOSI = ZCOSIL ZSINI = ZSINIL ZCOSH = ZCOSHL*COSQ + ZSINHL*SINQ ZSINH = SINQ*ZCOSHL - COSQ*ZSINHL ZN = ZNL CC = C1L ZE = ZEL ZMO = ZMOL ASSIGN 40 TO LS GO TO 20 40 SSE = SSE + SE SSI = SSI + SI SSL = SSL + SL SSG = SSG + SGH - COSIQ / SINIQ*SH SSH = SSH + SH / SINIQ * GEOPOTENTIAL RESONANCE INITIALIZATION FOR 12 HOUR ORBITS IRESFL = 0 ISYNFL = 0 IF(XNQ.LT.(.0052359877).AND.XNQ.GT.(.0034906585)) GO TO 70 IF(XNQ.LT.(8.26E-3) .OR. XNQ.GT.(9.24E-3)) RETURN IF(EQ.LT.0.5) RETURN IRESFL = 1 EOC = EQ*EQSQ G201 = -.306 - (EQ - .64)*.440 62 IF(EQ.GT.(.65)) GO TO 45 G211 = 3.616 - 13.247 * EQ + 16.290 * EQSQ G310 = -19.302 + 117.390 * EQ - 228.419 * EQSQ + 156.591 * EOC G322 = -18.9068 + 109.7927 * EQ - 214.6334 * EQSQ + 146.5816 * EOC G410 = -41.122 + 242.694 * EQ - 471.094 * EQSQ + 313.953 * EOC G422 = -146.407 + 841.880 * EQ - 1629.014 * EQSQ + 1083.435 * EOC G520 = -532.114 + 3017.977 * EQ - 5740 * EQSQ + 3708.276 * EOC GO TO 55 45 G211 = -72.099 + 331.819 * EQ - 508.738 * EQSQ + 266.724 * EOC G310 = -346.844 + 1582.851 * EQ - 2415.925 * EQSQ + 1246.113 * EOC G322 = -342.585 + 1554.908 * EQ - 2366.899 * EQSQ + 1215.972 * EOC G410 = -1052.797 + 4758.686 * EQ - 7193.992 * EQSQ + 3651.957 * EOC G422 = -3581.69 + 16178.11 * EQ - 24462.77 * EQSQ + 12422.52 * EOC IF(EQ.GT.(.715)) GO TO 50 G520 = 1464.74 - 4664.75 * EQ + 3763.64 * EQSQ GO TO 55 50 G520 = -5149.66 + 29936.92 * EQ - 54087.36 * EQSQ + 31324.56 * EOC 55 IF(EQ.GE.(.7)) GO TO 60 G533 = -919.2277 + 4988.61 * EQ - 9064.77 * EQSQ + 5542.21 * EOC G521 = -822.71072 + 4568.6173 * EQ - 8491.4146 * EQSQ + 5337.524 * EOC G532 = -853.666 + 4690.25 * EQ - 8624.77 * EQSQ + 5341.4 * EOC GO TO 65 60 G533 = -37995.78 + 161616.52 * EQ - 229838.2 * EQSQ + 109377.94 * EOC G521 = -51752.104 + 218913.95 * EQ - 309468.16 * EQSQ + 146349.42 * EOC G532 = -40023.88 + 170470.89 * EQ - 242699.48 * EQSQ + 115605.82 * EOC 65 SINI2 = SINIQ*SINIQ F220 = .75 * (1. + 2. * COSIQ + COSQ2) F221 = 1.5 * SINI2 F321 = 1.875 * SINIQ*(1. - 2. * COSIQ - 3. * COSQ2) F322 = -1.875 * SINIQ*(1. + 2. * COSIQ - 3. * COSQ2) F441 = 35. * SINI2*F220 F442 = 39.3750 * SINI2*SINI2 F522 = 9.84375 * SINIQ*(SINI2*(1. - 2. * COSIQ - 5. * COSQ2) 1 + .33333333 * (-2. + 4. * COSIQ + 6. * COSQ2)) F523 = SINIQ*(4.92187512 * SINI2*(-2. - 4. * COSIQ + 10. * COSQ2) * +6.56250012 * (1. + 2. * COSIQ - 3. * COSQ2)) F542 = 29.53125 * SINIQ*(2. - 8. * COSIQ + COSQ2*(-12. + 8. * COSIQ * +10. * COSQ2)) F543 = 29.53125 * SINIQ*(-2. - 8. * COSIQ + COSQ2*(12. + 8. * COSIQ - 10. * COSQ2)) XNO2 = XNQ*XNQ AINV2 = AQNV*AQNV TEMP1 = 3. * XNO2*AINV2 TEMP = TEMP1*ROOT22 D2201 = TEMP*F220*G201 D2211 = TEMP*F221*G211 TEMP1 = TEMP1*AQNV TEMP = TEMP1*ROOT32 D3210 = TEMP*F321*G310 63 D3222 = TEMP*F322*G322 TEMP1 = TEMP1*AQNV TEMP = 2. * TEMP1*ROOT44 D4410 = TEMP*F441*G410 D4422 = TEMP*F442*G422 TEMP1 = TEMP1*AQNV TEMP = TEMP1*ROOT52 D5220 = TEMP*F522*G520 D5232 = TEMP*F523*G532 TEMP = 2. * TEMP1*ROOT54 D5421 = TEMP*F542*G521 D5433 = TEMP*F543*G533 XLAMO = XMAO + XNODEO + XNODEO - THGR - THGR BFACT = XLLDOT + XNODOT + XNODOT - THDT - THDT BFACT = BFACT + SSL + SSH + SSH GO TO 80 * SYNCHRONOUS RESONANCE TERMS INITIALIZATION 70 IRESFL = 1 ISYNFL = 1 G200 = 1.0 + EQSQ*(-2.5 + .8125 * EQSQ) G310 = 1.0 + 2.0 * EQSQ G300 = 1.0 + EQSQ*(-6.0 + 6.60937 * EQSQ) F220 = .75 * (1. + COSIQ)*(1. + COSIQ) F311 = .9375 * SINIQ*SINIQ*(1. + 3. * COSIQ) - .75 * (1. + COSIQ) F330 = 1. + COSIQ F330 = 1.875 * F330*F330*F330 DEL1 = 3. * XNQ*XNQ*AQNV*AQNV DEL2 = 2. * DEL1*F220*G200*Q22 DEL3 = 3. * DEL1*F330*G300*Q33*AQNV DEL1 = DEL1*F311*G310*Q31*AQNV FASX2 = .13130908 FASX4 = 2.8843198 FASX6 = .37448087 XLAMO = XMAO + XNODEO + OMEGAO - THGR BFACT = XLLDOT + XPIDOT - THDT BFACT = BFACT + SSL + SSG + SSH 80 XFACT = BFACT - XNQ C C INITIALIZE INTEGRATOR C XLI = XLAMO XNI = XNQ ATIME = 0.D0 STEPP = 720.D0 STEPN = -720.D0 STEP2 = 259200.D0 64 RETURN /* * ENTRANCE FOR DEEP SPACE SECULAR EFFECTS */ ENTRY DPSEC(XLL, OMGASM, XNODES, EM, XINC, XN, T) XLL = XLL + SSL*T OMGASM = OMGASM + SSG*T XNODES = XNODES + SSH*T EM = EO + SSE*T XINC = XINCL + SSI*T IF(XINC .GE. 0.) GO TO 90 XINC = -XINC XNODES = XNODES + PI OMGASM = OMGASM - PI 90 IF(IRESFL .EQ. 0) RETURN 100 IF(ATIME.EQ.0.D0) GO TO 170 IF(T.GE.(0.D0).AND.ATIME.LT.(0.D0)) GO TO 170 IF(T.LT.(0.D0).AND.ATIME.GE.(0.D0)) GO TO 170 105 IF(DABS(T).GE.DABS(ATIME)) GO TO 120 DELT = STEPP IF(T.GE.0.D0) DELT = STEPN 110 ASSIGN 100 TO IRET GO TO 160 120 DELT = STEPN IF(T.GT.0.D0) DELT = STEPP 125 IF(DABS(T - ATIME).LT.STEPP) GO TO 130 ASSIGN 125 TO IRET GO TO 160 130 FT = T - ATIME ASSIGN 140 TO IRETN GO TO 150 140 XN = XNI + XNDOT*FT + XNDDT*FT*FT * 0.5 XL = XLI + XLDOT*FT + XNDOT*FT*FT * 0.5 TEMP = -XNODES + THGR + T*THDT XLL = XL - OMGASM + TEMP IF(ISYNFL.EQ.0) XLL = XL + TEMP + TEMP RETURN C C DOT TERMS CALCULATED C 150 IF(ISYNFL.EQ.0) GO TO 152 XNDOT = DEL1*SIN(XLI - FASX2) + DEL2*SIN(2. * (XLI - FASX4)) 1 + DEL3*SIN(3. * (XLI - FASX6)) XNDDT = DEL1*COS(XLI - FASX2) * +2. * DEL2*COS(2. * (XLI - FASX4)) * +3. * DEL3*COS(3. * (XLI - FASX6)) GO TO 154 152 XOMI = OMEGAQ + OMGDT*ATIME 65 X2OMI = XOMI + XOMI X2LI = XLI + XLI XNDOT = D2201*SIN(X2OMI + XLI - G22) * +D2211*SIN(XLI - G22) * +D3210*SIN(XOMI + XLI - G32) * +D3222*SIN(-XOMI + XLI - G32) * +D4410*SIN(X2OMI + X2LI - G44) * +D4422*SIN(X2LI - G44) * +D5220*SIN(XOMI + XLI - G52) * +D5232*SIN(-XOMI + XLI - G52) * +D5421*SIN(XOMI + X2LI - G54) * +D5433*SIN(-XOMI + X2LI - G54) XNDDT = D2201*COS(X2OMI + XLI - G22) * +D2211*COS(XLI - G22) * +D3210*COS(XOMI + XLI - G32) * +D3222*COS(-XOMI + XLI - G32) * +D5220*COS(XOMI + XLI - G52) * +D5232*COS(-XOMI + XLI - G52) * +2. * (D4410*COS(X2OMI + X2LI - G44) * +D4422*COS(X2LI - G44) * +D5421*COS(XOMI + X2LI - G54) * +D5433*COS(-XOMI + X2LI - G54)) 154 XLDOT = XNI + XFACT XNDDT = XNDDT*XLDOT GO TO IRETN C C INTEGRATOR C 160 ASSIGN 165 TO IRETN GO TO 150 165 XLI = XLI + XLDOT*DELT + XNDOT*STEP2 XNI = XNI + XNDOT*DELT + XNDDT*STEP2 ATIME = ATIME + DELT GO TO IRET C C EPOCH RESTART C 170 IF(T.GE.0.D0) GO TO 175 DELT = STEPN GO TO 180 175 DELT = STEPP 180 ATIME = 0.D0 XNI = XNQ XLI = XLAMO GO TO 125 /* * ENTRANCES FOR LUNAR-SOLAR PERIODICS */ ENTRY DPPER(EM, XINC, OMGASM, XNODES, XLL) SINIS = SIN(XINC) COSIS = COS(XINC) IF(DABS(SAVTSN - T).LT.(30.D0)) GO TO 210 SAVTSN = T ZM = ZMOS + ZNS*T 205 ZF = ZM + 2. * ZES*SIN(ZM) SINZF = SIN(ZF) F2 = .5 * SINZF*SINZF - .25 F3 = -.5 * SINZF*COS(ZF) SES = SE2*F2 + SE3*F3 SIS = SI2*F2 + SI3*F3 SLS = SL2*F2 + SL3*F3 + SL4*SINZF SGHS = SGH2*F2 + SGH3*F3 + SGH4*SINZF SHS = SH2*F2 + SH3*F3 ZM = ZMOL + ZNL*T ZF = ZM + 2. * ZEL*SIN(ZM) SINZF = SIN(ZF) F2 = .5 * SINZF*SINZF - .25 F3 = -.5 * SINZF*COS(ZF) SEL = EE2*F2 + E3*F3 SIL = XI2*F2 + XI3*F3 SLL = XL2*F2 + XL3*F3 + XL4*SINZF SGHL = XGH2*F2 + XGH3*F3 + XGH4*SINZF SHL = XH2*F2 + XH3*F3 PE = SES + SEL PINC = SIS + SIL PL = SLS + SLL 210 PGH = SGHS + SGHL PH = SHS + SHL XINC = XINC + PINC EM = EM + PE IF(XQNCL.LT.(.2)) GO TO 220 GO TO 218 C C APPLY PERIODICS DIRECTLY C 218 PH = PH / SINIQ PGH = PGH - COSIQ*PH OMGASM = OMGASM + PGH XNODES = XNODES + PH XLL = XLL + PL GO TO 230 C C APPLY PERIODICS WITH LYDDANE MODIFICATION C 220 SINOK = SIN(XNODES) 67 COSOK = COS(XNODES) ALFDP = SINIS*SINOK BETDP = SINIS*COSOK DALF = PH*COSOK + PINC*COSIS*SINOK DBET = -PH*SINOK + PINC*COSIS*COSOK ALFDP = ALFDP + DALF BETDP = BETDP + DBET XLS = XLL + OMGASM + COSIS*XNODES DLS = PL + PGH - PINC*XNODES*SINIS XLS = XLS + DLS XNODES = ACTAN(ALFDP, BETDP) XLL = XLL + PL OMGASM = XLS - XLL - COS(XINC) * XNODES 230 CONTINUE RETURN END #endif