Dos to unix

feature/19
Daniel Warner 2011-12-24 00:26:41 +00:00
parent 3ca8edbc96
commit 84bbd5fa54
8 changed files with 2203 additions and 2203 deletions

164
Eci.cpp
View File

@ -1,82 +1,82 @@
#include "Eci.h"
#include "Util.h"
void Eci::ToEci(const Julian& date, const CoordGeodetic &g)
{
/*
* set date
*/
date_ = date;
static const double mfactor = kTWOPI * (kOMEGA_E / kSECONDS_PER_DAY);
/*
* Calculate Local Mean Sidereal Time for observers longitude
*/
const double theta = date_.ToLocalMeanSiderealTime(g.longitude);
/*
* take into account earth flattening
*/
const double c = 1.0
/ sqrt(1.0 + kF * (kF - 2.0) * pow(sin(g.latitude), 2.0));
const double s = pow(1.0 - kF, 2.0) * c;
const double achcp = (kXKMPER * c + g.altitude) * cos(g.latitude);
/*
* X position in km
* Y position in km
* Z position in km
* W magnitude in km
*/
position_.x = achcp * cos(theta);
position_.y = achcp * sin(theta);
position_.z = (kXKMPER * s + g.altitude) * sin(g.latitude);
position_.w = position_.GetMagnitude();
/*
* X velocity in km/s
* Y velocity in km/s
* Z velocity in km/s
* W magnitude in km/s
*/
velocity_.x = -mfactor * position_.y;
velocity_.y = mfactor * position_.x;
velocity_.z = 0.0;
velocity_.w = velocity_.GetMagnitude();
}
CoordGeodetic Eci::ToGeodetic() const
{
const double theta = Util::AcTan(position_.y, position_.x);
// 0 >= lon < 360
// const double lon = Fmod2p(theta - date_.ToGreenwichSiderealTime());
// 180 >= lon < 180
const double lon = Util::WrapNegPosPI(theta - date_.ToGreenwichSiderealTime());
const double r = sqrt((position_.x * position_.x)
+ (position_.y * position_.y));
static const double e2 = kF * (2.0 - kF);
double lat = Util::AcTan(position_.z, r);
double phi = 0.0;
double c = 0.0;
int cnt = 0;
do
{
phi = lat;
const double sinphi = sin(phi);
c = 1.0 / sqrt(1.0 - e2 * sinphi * sinphi);
lat = Util::AcTan(position_.z + kXKMPER * c * e2 * sinphi, r);
cnt++;
}
while (fabs(lat - phi) >= 1e-10 && cnt < 10);
const double alt = r / cos(lat) - kXKMPER * c;
return CoordGeodetic(lat, lon, alt, true);
}
#include "Eci.h"
#include "Util.h"
void Eci::ToEci(const Julian& date, const CoordGeodetic &g)
{
/*
* set date
*/
date_ = date;
static const double mfactor = kTWOPI * (kOMEGA_E / kSECONDS_PER_DAY);
/*
* Calculate Local Mean Sidereal Time for observers longitude
*/
const double theta = date_.ToLocalMeanSiderealTime(g.longitude);
/*
* take into account earth flattening
*/
const double c = 1.0
/ sqrt(1.0 + kF * (kF - 2.0) * pow(sin(g.latitude), 2.0));
const double s = pow(1.0 - kF, 2.0) * c;
const double achcp = (kXKMPER * c + g.altitude) * cos(g.latitude);
/*
* X position in km
* Y position in km
* Z position in km
* W magnitude in km
*/
position_.x = achcp * cos(theta);
position_.y = achcp * sin(theta);
position_.z = (kXKMPER * s + g.altitude) * sin(g.latitude);
position_.w = position_.GetMagnitude();
/*
* X velocity in km/s
* Y velocity in km/s
* Z velocity in km/s
* W magnitude in km/s
*/
velocity_.x = -mfactor * position_.y;
velocity_.y = mfactor * position_.x;
velocity_.z = 0.0;
velocity_.w = velocity_.GetMagnitude();
}
CoordGeodetic Eci::ToGeodetic() const
{
const double theta = Util::AcTan(position_.y, position_.x);
// 0 >= lon < 360
// const double lon = Fmod2p(theta - date_.ToGreenwichSiderealTime());
// 180 >= lon < 180
const double lon = Util::WrapNegPosPI(theta - date_.ToGreenwichSiderealTime());
const double r = sqrt((position_.x * position_.x)
+ (position_.y * position_.y));
static const double e2 = kF * (2.0 - kF);
double lat = Util::AcTan(position_.z, r);
double phi = 0.0;
double c = 0.0;
int cnt = 0;
do
{
phi = lat;
const double sinphi = sin(phi);
c = 1.0 / sqrt(1.0 - e2 * sinphi * sinphi);
lat = Util::AcTan(position_.z + kXKMPER * c * e2 * sinphi, r);
cnt++;
}
while (fabs(lat - phi) >= 1e-10 && cnt < 10);
const double alt = r / cos(lat) - kXKMPER * c;
return CoordGeodetic(lat, lon, alt, true);
}

View File

@ -1,306 +1,306 @@
#include "Globals.h"
#include "Julian.h"
#include "Util.h"
#include <cmath>
#include <ctime>
#include <cassert>
#ifdef WIN32
#include <windows.h>
#else
#include <sys/time.h>
#endif
Julian::Julian()
{
#ifdef WIN32
SYSTEMTIME st;
GetSystemTime(&st);
Initialize(st.wYear,
st.wMonth,
st.wDay,
st.wHour,
st.wMinute,
(double) st.wSecond + (double) st.wMilliseconds / 1000.0);
#else
struct timeval tv;
gettimeofday(&tv, NULL);
struct tm gmt;
gmtime_r(&tv.tv_sec, &gmt);
Initialize(gmt.tm_year + 1900,
gmt.tm_mon + 1,
gmt.tm_mday,
gmt.tm_hour,
gmt.tm_min,
(double) gmt.tm_sec + (double) tv.tv_usec / 1000000.0);
#endif
}
/*
* create julian date given time_t value
*/
Julian::Julian(const time_t t)
{
struct tm ptm;
#if WIN32
if (gmtime_s(&ptm, &t))
{
assert(1);
}
#else
if (gmtime_r(&t, &ptm) == NULL)
{
assert(1);
}
#endif
int year = ptm.tm_year + 1900;
double day = ptm.tm_yday + 1 +
(ptm.tm_hour +
((ptm.tm_min +
(ptm.tm_sec / 60.0)) / 60.0)) / 24.0;
Initialize(year, day);
}
/*
* comparison
*/
bool Julian::operator==(const Julian &date) const
{
return date_ == date.date_ ? true : false;
}
bool Julian::operator!=(const Julian &date) const
{
return !(*this == date);
}
bool Julian::operator>(const Julian &date) const
{
return date_ > date.date_ ? true : false;
}
bool Julian::operator<(const Julian &date) const {
return date_ < date.date_ ? true : false;
}
bool Julian::operator>=(const Julian &date) const
{
return date_ >= date.date_ ? true : false;
}
bool Julian::operator<=(const Julian &date) const
{
return date_ <= date.date_ ? true : false;
}
/*
* assignment
*/
Julian& Julian::operator=(const Julian& b)
{
if (this != &b) {
date_ = b.date_;
}
return (*this);
}
Julian& Julian::operator=(const double b)
{
date_ = b;
return (*this);
}
/*
* arithmetic
*/
Julian Julian::operator +(const Timespan& b) const
{
return Julian(*this) += b;
}
Julian Julian::operator-(const Timespan& b) const
{
return Julian(*this) -= b;
}
Timespan Julian::operator-(const Julian& b) const
{
return Timespan(date_ - b.date_);
}
/*
* compound assignment
*/
Julian & Julian::operator +=(const Timespan& b)
{
date_ += b;
return (*this);
}
Julian & Julian::operator -=(const Timespan& b)
{
date_ -= b;
return (*this);
}
/*
* create julian date from year and day of year
*/
void Julian::Initialize(int year, double day)
{
year--;
int A = (year / 100);
int B = 2 - A + (A / 4);
double new_years = static_cast<int> (365.25 * year) +
static_cast<int> (30.6001 * 14) +
1720994.5 + B;
date_ = new_years + day;
}
/*
* create julian date from individual components
* year: 2004
* mon: 1-12
* day: 1-31
* hour: 0-23
* min: 0-59
* sec: 0-59.99
*/
void Julian::Initialize(int year, int mon, int day,
int hour, int min, double sec)
{
// Calculate N, the day of the year (1..366)
int N;
int F1 = (int) ((275.0 * mon) / 9.0);
int F2 = (int) ((mon + 9.0) / 12.0);
if (IsLeapYear(year))
{
// Leap year
N = F1 - F2 + day - 30;
}
else
{
// Common year
N = F1 - (2 * F2) + day - 30;
}
double dblDay = N + (hour + (min + (sec / 60.0)) / 60.0) / 24.0;
Initialize(year, dblDay);
}
/*
* converts time to time_t
* note: resolution to seconds only
*/
time_t Julian::ToTime() const
{
return static_cast<time_t> ((date_ - 2440587.5) * 86400.0);
}
/*
* Greenwich Mean Sidereal Time
*/
double Julian::ToGreenwichSiderealTime() const
{
#if 0
const double UT = fmod(jul + 0.5, 1.0);
const double TU = (jul - 2451545.0 - UT) / 36525.0;
double GMST = 24110.54841 + TU *
(8640184.812866 + TU * (0.093104 - TU * 6.2e-06));
GMST = fmod(GMST + SEC_PER_DAY * OMEGA_E * UT, SEC_PER_DAY);
if (GMST < 0.0)
{
GMST += SEC_PER_DAY; // "wrap" negative modulo value
}
return (TWOPI * (GMST / SEC_PER_DAY));
#endif
// tut1 = Julian centuries from 2000 Jan. 1 12h UT1
// (since J2000 which is 2451545.0)
// a Julian century is 36525 days
const double tut1 = (date_ - 2451545.0) / 36525.0;
// Rotation angle in arcseconds
double theta = 67310.54841 + (876600.0 * 3600.0 + 8640184.812866) * tut1
+ 0.093104 * pow(tut1, 2.0) - 0.0000062 * pow(tut1, 3.0);
// 360.0 / 86400.0 = 1.0 / 240.0
theta = Util::WrapTwoPI(Util::DegreesToRadians(theta / 240.0));
return theta;
#if 0
static const double C1 = 1.72027916940703639e-2;
static const double THGR70 = 1.7321343856509374;
static const double FK5R = 5.07551419432269442e-15;
/*
* get integer number of days from 0 jan 1970
*/
const double ts70 = date_ - 2433281.5 - 7305.0;
const double ds70 = floor(ts70 + 1.0e-8);
const double tfrac = ts70 - ds70;
/*
* find greenwich location at epoch
*/
const double c1p2p = C1 + kTWOPI;
double gsto = Util::WrapTwoPI(THGR70 + C1 * ds70 + c1p2p * tfrac
+ ts70 * ts70 * FK5R);
return gsto;
#endif
}
/*
* Local Mean Sideral Time
*/
double Julian::ToLocalMeanSiderealTime(const double& lon) const
{
return fmod(ToGreenwichSiderealTime() + lon, kTWOPI);
}
void Julian::ToGregorian(struct DateTimeComponents* datetime) const
{
double jdAdj = GetDate() + 0.5;
int Z = (int) jdAdj;
double F = jdAdj - Z;
int A = 0;
if (Z < 2299161)
{
A = static_cast<int> (Z);
}
else
{
int a = static_cast<int> ((Z - 1867216.25) / 36524.25);
A = static_cast<int> (Z + 1 + a - static_cast<int> (a / 4));
}
int B = A + 1524;
int C = static_cast<int> ((B - 122.1) / 365.25);
int D = static_cast<int> (365.25 * C);
int E = static_cast<int> ((B - D) / 30.6001);
datetime->hours = static_cast<int> (F * 24.0);
F -= datetime->hours / 24.0;
datetime->minutes = static_cast<int> (F * 1440.0);
F -= datetime->minutes / 1440.0;
datetime->seconds = F * 86400.0;
datetime->days = B - D - static_cast<int> (30.6001 * E);
datetime->months = E < 14 ? E - 1 : E - 13;
datetime->years = datetime->months > 2 ? C - 4716 : C - 4715;
}
#include "Globals.h"
#include "Julian.h"
#include "Util.h"
#include <cmath>
#include <ctime>
#include <cassert>
#ifdef WIN32
#include <windows.h>
#else
#include <sys/time.h>
#endif
Julian::Julian()
{
#ifdef WIN32
SYSTEMTIME st;
GetSystemTime(&st);
Initialize(st.wYear,
st.wMonth,
st.wDay,
st.wHour,
st.wMinute,
(double) st.wSecond + (double) st.wMilliseconds / 1000.0);
#else
struct timeval tv;
gettimeofday(&tv, NULL);
struct tm gmt;
gmtime_r(&tv.tv_sec, &gmt);
Initialize(gmt.tm_year + 1900,
gmt.tm_mon + 1,
gmt.tm_mday,
gmt.tm_hour,
gmt.tm_min,
(double) gmt.tm_sec + (double) tv.tv_usec / 1000000.0);
#endif
}
/*
* create julian date given time_t value
*/
Julian::Julian(const time_t t)
{
struct tm ptm;
#if WIN32
if (gmtime_s(&ptm, &t))
{
assert(1);
}
#else
if (gmtime_r(&t, &ptm) == NULL)
{
assert(1);
}
#endif
int year = ptm.tm_year + 1900;
double day = ptm.tm_yday + 1 +
(ptm.tm_hour +
((ptm.tm_min +
(ptm.tm_sec / 60.0)) / 60.0)) / 24.0;
Initialize(year, day);
}
/*
* comparison
*/
bool Julian::operator==(const Julian &date) const
{
return date_ == date.date_ ? true : false;
}
bool Julian::operator!=(const Julian &date) const
{
return !(*this == date);
}
bool Julian::operator>(const Julian &date) const
{
return date_ > date.date_ ? true : false;
}
bool Julian::operator<(const Julian &date) const {
return date_ < date.date_ ? true : false;
}
bool Julian::operator>=(const Julian &date) const
{
return date_ >= date.date_ ? true : false;
}
bool Julian::operator<=(const Julian &date) const
{
return date_ <= date.date_ ? true : false;
}
/*
* assignment
*/
Julian& Julian::operator=(const Julian& b)
{
if (this != &b) {
date_ = b.date_;
}
return (*this);
}
Julian& Julian::operator=(const double b)
{
date_ = b;
return (*this);
}
/*
* arithmetic
*/
Julian Julian::operator +(const Timespan& b) const
{
return Julian(*this) += b;
}
Julian Julian::operator-(const Timespan& b) const
{
return Julian(*this) -= b;
}
Timespan Julian::operator-(const Julian& b) const
{
return Timespan(date_ - b.date_);
}
/*
* compound assignment
*/
Julian & Julian::operator +=(const Timespan& b)
{
date_ += b;
return (*this);
}
Julian & Julian::operator -=(const Timespan& b)
{
date_ -= b;
return (*this);
}
/*
* create julian date from year and day of year
*/
void Julian::Initialize(int year, double day)
{
year--;
int A = (year / 100);
int B = 2 - A + (A / 4);
double new_years = static_cast<int> (365.25 * year) +
static_cast<int> (30.6001 * 14) +
1720994.5 + B;
date_ = new_years + day;
}
/*
* create julian date from individual components
* year: 2004
* mon: 1-12
* day: 1-31
* hour: 0-23
* min: 0-59
* sec: 0-59.99
*/
void Julian::Initialize(int year, int mon, int day,
int hour, int min, double sec)
{
// Calculate N, the day of the year (1..366)
int N;
int F1 = (int) ((275.0 * mon) / 9.0);
int F2 = (int) ((mon + 9.0) / 12.0);
if (IsLeapYear(year))
{
// Leap year
N = F1 - F2 + day - 30;
}
else
{
// Common year
N = F1 - (2 * F2) + day - 30;
}
double dblDay = N + (hour + (min + (sec / 60.0)) / 60.0) / 24.0;
Initialize(year, dblDay);
}
/*
* converts time to time_t
* note: resolution to seconds only
*/
time_t Julian::ToTime() const
{
return static_cast<time_t> ((date_ - 2440587.5) * 86400.0);
}
/*
* Greenwich Mean Sidereal Time
*/
double Julian::ToGreenwichSiderealTime() const
{
#if 0
const double UT = fmod(jul + 0.5, 1.0);
const double TU = (jul - 2451545.0 - UT) / 36525.0;
double GMST = 24110.54841 + TU *
(8640184.812866 + TU * (0.093104 - TU * 6.2e-06));
GMST = fmod(GMST + SEC_PER_DAY * OMEGA_E * UT, SEC_PER_DAY);
if (GMST < 0.0)
{
GMST += SEC_PER_DAY; // "wrap" negative modulo value
}
return (TWOPI * (GMST / SEC_PER_DAY));
#endif
// tut1 = Julian centuries from 2000 Jan. 1 12h UT1
// (since J2000 which is 2451545.0)
// a Julian century is 36525 days
const double tut1 = (date_ - 2451545.0) / 36525.0;
// Rotation angle in arcseconds
double theta = 67310.54841 + (876600.0 * 3600.0 + 8640184.812866) * tut1
+ 0.093104 * pow(tut1, 2.0) - 0.0000062 * pow(tut1, 3.0);
// 360.0 / 86400.0 = 1.0 / 240.0
theta = Util::WrapTwoPI(Util::DegreesToRadians(theta / 240.0));
return theta;
#if 0
static const double C1 = 1.72027916940703639e-2;
static const double THGR70 = 1.7321343856509374;
static const double FK5R = 5.07551419432269442e-15;
/*
* get integer number of days from 0 jan 1970
*/
const double ts70 = date_ - 2433281.5 - 7305.0;
const double ds70 = floor(ts70 + 1.0e-8);
const double tfrac = ts70 - ds70;
/*
* find greenwich location at epoch
*/
const double c1p2p = C1 + kTWOPI;
double gsto = Util::WrapTwoPI(THGR70 + C1 * ds70 + c1p2p * tfrac
+ ts70 * ts70 * FK5R);
return gsto;
#endif
}
/*
* Local Mean Sideral Time
*/
double Julian::ToLocalMeanSiderealTime(const double& lon) const
{
return fmod(ToGreenwichSiderealTime() + lon, kTWOPI);
}
void Julian::ToGregorian(struct DateTimeComponents* datetime) const
{
double jdAdj = GetDate() + 0.5;
int Z = (int) jdAdj;
double F = jdAdj - Z;
int A = 0;
if (Z < 2299161)
{
A = static_cast<int> (Z);
}
else
{
int a = static_cast<int> ((Z - 1867216.25) / 36524.25);
A = static_cast<int> (Z + 1 + a - static_cast<int> (a / 4));
}
int B = A + 1524;
int C = static_cast<int> ((B - 122.1) / 365.25);
int D = static_cast<int> (365.25 * C);
int E = static_cast<int> ((B - D) / 30.6001);
datetime->hours = static_cast<int> (F * 24.0);
F -= datetime->hours / 24.0;
datetime->minutes = static_cast<int> (F * 1440.0);
F -= datetime->minutes / 1440.0;
datetime->seconds = F * 86400.0;
datetime->days = B - D - static_cast<int> (30.6001 * E);
datetime->months = E < 14 ? E - 1 : E - 13;
datetime->years = datetime->months > 2 ? C - 4716 : C - 4715;
}

View File

@ -1,63 +1,63 @@
#include "Observer.h"
/*
* calculate lookangle between the observer and the passed in Eci object
*/
CoordTopographic Observer::GetLookAngle(const Eci &eci)
{
/*
* update the observers Eci to match the time of the Eci passed in
* if necessary
*/
UpdateObserversEci(eci.GetDate());
/*
* calculate differences
*/
Vector range_rate = eci.GetVelocity().Subtract(observers_eci_.GetVelocity());
Vector range = eci.GetPosition().Subtract(observers_eci_.GetPosition());
range.w = range.GetMagnitude();
/*
* Calculate Local Mean Sidereal Time for observers longitude
*/
double theta = eci.GetDate().ToLocalMeanSiderealTime(geo_.longitude);
double sin_lat = sin(geo_.latitude);
double cos_lat = cos(geo_.latitude);
double sin_theta = sin(theta);
double cos_theta = cos(theta);
double top_s = sin_lat * cos_theta * range.x
+ sin_lat * sin_theta * range.y - cos_lat * range.z;
double top_e = -sin_theta * range.x
+ cos_theta * range.y;
double top_z = cos_lat * cos_theta * range.x
+ cos_lat * sin_theta * range.y + sin_lat * range.z;
double az = atan(-top_e / top_s);
if (top_s > 0.0)
{
az += kPI;
}
if (az < 0.0)
{
az += 2.0 * kPI;
}
double el = asin(top_z / range.w);
double rate = range.Dot(range_rate) / range.w;
/*
* azimuth in radians
* elevation in radians
* range in km
* range rate in km/s
*/
return CoordTopographic(az,
el,
range.w,
rate);
}
#include "Observer.h"
/*
* calculate lookangle between the observer and the passed in Eci object
*/
CoordTopographic Observer::GetLookAngle(const Eci &eci)
{
/*
* update the observers Eci to match the time of the Eci passed in
* if necessary
*/
UpdateObserversEci(eci.GetDate());
/*
* calculate differences
*/
Vector range_rate = eci.GetVelocity().Subtract(observers_eci_.GetVelocity());
Vector range = eci.GetPosition().Subtract(observers_eci_.GetPosition());
range.w = range.GetMagnitude();
/*
* Calculate Local Mean Sidereal Time for observers longitude
*/
double theta = eci.GetDate().ToLocalMeanSiderealTime(geo_.longitude);
double sin_lat = sin(geo_.latitude);
double cos_lat = cos(geo_.latitude);
double sin_theta = sin(theta);
double cos_theta = cos(theta);
double top_s = sin_lat * cos_theta * range.x
+ sin_lat * sin_theta * range.y - cos_lat * range.z;
double top_e = -sin_theta * range.x
+ cos_theta * range.y;
double top_z = cos_lat * cos_theta * range.x
+ cos_lat * sin_theta * range.y + sin_lat * range.z;
double az = atan(-top_e / top_s);
if (top_s > 0.0)
{
az += kPI;
}
if (az < 0.0)
{
az += 2.0 * kPI;
}
double el = asin(top_z / range.w);
double rate = range.Dot(range_rate) / range.w;
/*
* azimuth in radians
* elevation in radians
* range in km
* range rate in km/s
*/
return CoordTopographic(az,
el,
range.w,
rate);
}

View File

@ -1,47 +1,47 @@
#include "OrbitalElements.h"
OrbitalElements::OrbitalElements(const Tle& tle)
{
/*
* extract and format tle data
*/
mean_anomoly_ = tle.MeanAnomaly(false);
ascending_node_ = tle.RightAscendingNode(false);
argument_perigee_ = tle.ArgumentPerigee(false);
eccentricity_ = tle.Eccentricity();
inclination_ = tle.Inclination(false);
mean_motion_ = tle.MeanMotion() * kTWOPI / kMINUTES_PER_DAY;
bstar_ = tle.BStar();
epoch_ = tle.Epoch();
/*
* recover original mean motion (xnodp) and semimajor axis (aodp)
* from input elements
*/
const double a1 = pow(kXKE / MeanMotion(), kTWOTHIRD);
const double cosio = cos(Inclination());
const double theta2 = cosio * cosio;
const double x3thm1 = 3.0 * theta2 - 1.0;
const double eosq = Eccentricity() * Eccentricity();
const double betao2 = 1.0 - eosq;
const double betao = sqrt(betao2);
const double temp = (1.5 * kCK2) * x3thm1 / (betao * betao2);
const double del1 = temp / (a1 * a1);
const double a0 = a1 * (1.0 - del1 * (1.0 / 3.0 + del1 * (1.0 + del1 * 134.0 / 81.0)));
const double del0 = temp / (a0 * a0);
recovered_mean_motion_ = MeanMotion() / (1.0 + del0);
/*
* alternative way to calculate
* doesnt affect final results
* recovered_semi_major_axis_ = pow(XKE / RecoveredMeanMotion(), TWOTHIRD);
*/
recovered_semi_major_axis_ = a0 / (1.0 - del0);
/*
* find perigee and period
*/
perigee_ = (RecoveredSemiMajorAxis() * (1.0 - Eccentricity()) - kAE) * kXKMPER;
period_ = kTWOPI / RecoveredMeanMotion();
}
#include "OrbitalElements.h"
OrbitalElements::OrbitalElements(const Tle& tle)
{
/*
* extract and format tle data
*/
mean_anomoly_ = tle.MeanAnomaly(false);
ascending_node_ = tle.RightAscendingNode(false);
argument_perigee_ = tle.ArgumentPerigee(false);
eccentricity_ = tle.Eccentricity();
inclination_ = tle.Inclination(false);
mean_motion_ = tle.MeanMotion() * kTWOPI / kMINUTES_PER_DAY;
bstar_ = tle.BStar();
epoch_ = tle.Epoch();
/*
* recover original mean motion (xnodp) and semimajor axis (aodp)
* from input elements
*/
const double a1 = pow(kXKE / MeanMotion(), kTWOTHIRD);
const double cosio = cos(Inclination());
const double theta2 = cosio * cosio;
const double x3thm1 = 3.0 * theta2 - 1.0;
const double eosq = Eccentricity() * Eccentricity();
const double betao2 = 1.0 - eosq;
const double betao = sqrt(betao2);
const double temp = (1.5 * kCK2) * x3thm1 / (betao * betao2);
const double del1 = temp / (a1 * a1);
const double a0 = a1 * (1.0 - del1 * (1.0 / 3.0 + del1 * (1.0 + del1 * 134.0 / 81.0)));
const double del0 = temp / (a0 * a0);
recovered_mean_motion_ = MeanMotion() / (1.0 + del0);
/*
* alternative way to calculate
* doesnt affect final results
* recovered_semi_major_axis_ = pow(XKE / RecoveredMeanMotion(), TWOTHIRD);
*/
recovered_semi_major_axis_ = a0 / (1.0 - del0);
/*
* find perigee and period
*/
perigee_ = (RecoveredSemiMajorAxis() * (1.0 - Eccentricity()) - kAE) * kXKMPER;
period_ = kTWOPI / RecoveredMeanMotion();
}

View File

@ -1,238 +1,238 @@
#include "Julian.h"
#include "Tle.h"
#include "SGP4.h"
#include "Globals.h"
#include "Util.h"
#include "Observer.h"
#include "CoordGeodetic.h"
#include "CoordTopographic.h"
#include <list>
#include <string>
#include <iomanip>
#include <iostream>
#include <fstream>
#include <vector>
#include <cstdlib>
void RunTle(Tle tle, double start, double end, double inc)
{
double current = start;
SGP4 model(tle);
bool running = true;
bool first_run = true;
std::cout << " " << std::setprecision(0) << tle.NoradNumber() << " xx" << std::endl;
while (running)
{
try
{
double val;
if (first_run && current != 0.0)
{
/*
* make sure first run is always as zero
*/
val = 0.0;
}
else
{
/*
* otherwise run as normal
*/
val = current;
}
Eci eci = model.FindPosition(val);
Vector position = eci.GetPosition();
Vector velocity = eci.GetVelocity();
std::cout << std::setprecision(8) << std::fixed;
std::cout.width(17);
std::cout << val << " ";
std::cout.width(16);
std::cout << position.x << " ";
std::cout.width(16);
std::cout << position.y << " ";
std::cout.width(16);
std::cout << position.z << " ";
std::cout << std::setprecision(9) << std::fixed;
std::cout.width(14);
std::cout << velocity.x << " ";
std::cout.width(14);
std::cout << velocity.y << " ";
std::cout.width(14);
std::cout << velocity.z << std::endl;
}
catch (SatelliteException& e)
{
std::cout << e.what() << std::endl;
running = false;
}
if ((first_run && current == 0.0) || !first_run)
{
if (current == end)
{
running = false;
}
else if (current + inc > end)
{
current = end;
}
else
{
current += inc;
}
}
first_run = false;
}
}
void tokenize(const std::string& str, std::vector<std::string>& tokens)
{
const std::string& delimiters = " ";
/*
* skip delimiters at beginning
*/
std::string::size_type last_pos = str.find_first_not_of(delimiters, 0);
/*
* find first non-delimiter
*/
std::string::size_type pos = str.find_first_of(delimiters, last_pos);
while (std::string::npos != pos || std::string::npos != last_pos)
{
/*
* add found token to vector
*/
tokens.push_back(str.substr(last_pos, pos - last_pos));
/*
* skip delimiters
*/
last_pos = str.find_first_not_of(delimiters, pos);
/*
* find next non-delimiter
*/
pos = str.find_first_of(delimiters, last_pos);
}
}
void RunTest(const char* infile)
{
std::ifstream file;
file.open(infile);
if (!file.is_open())
{
std::cerr << "Error opening file" << std::endl;
return;
}
bool got_first_line = false;
std::string line1;
std::string line2;
std::string parameters;
while (!file.eof())
{
std::string line;
std::getline(file, line);
Util::Trim(line);
/*
* skip blank lines or lines starting with #
*/
if (line.length() == 0 || line[0] == '#')
{
got_first_line = false;
continue;
}
/*
* find first line
*/
if (!got_first_line)
{
try
{
Tle::IsValidLine(line, 1);
/*
* store line and now read in second line
*/
got_first_line = true;
line1 = line;
}
catch (TleException& e)
{
std::cerr << "Error: " << e.what() << std::endl;
std::cerr << line << std::endl;
}
}
else
{
/*
* no second chances, second line should follow the first
*/
got_first_line = false;
/*
* split line, first 69 is the second line of the tle
* the rest is the test parameters, if there is any
*/
line2 = line.substr(0, 69);
double start = 0.0;
double end = 1440.0;
double inc = 120.0;
if (line.length() > 69)
{
std::vector<std::string> tokens;
parameters = line.substr(70, line.length() - 69);
tokenize(parameters, tokens);
if (tokens.size() >= 3)
{
start = atof(tokens[0].c_str());
end = atof(tokens[1].c_str());
inc = atof(tokens[2].c_str());
}
}
/*
* following line must be the second line
*/
try
{
Tle::IsValidLine(line2, 2);
Tle tle("Test", line1, line2);
RunTle(tle, start, end, inc);
}
catch (TleException& e)
{
std::cerr << "Error: " << e.what() << std::endl;
std::cerr << line << std::endl;
}
}
}
/*
* close file
*/
file.close();
return;
}
int main()
{
const char* file_name = "SGP4-VER.TLE";
RunTest(file_name);
return 1;
}
#include "Julian.h"
#include "Tle.h"
#include "SGP4.h"
#include "Globals.h"
#include "Util.h"
#include "Observer.h"
#include "CoordGeodetic.h"
#include "CoordTopographic.h"
#include <list>
#include <string>
#include <iomanip>
#include <iostream>
#include <fstream>
#include <vector>
#include <cstdlib>
void RunTle(Tle tle, double start, double end, double inc)
{
double current = start;
SGP4 model(tle);
bool running = true;
bool first_run = true;
std::cout << " " << std::setprecision(0) << tle.NoradNumber() << " xx" << std::endl;
while (running)
{
try
{
double val;
if (first_run && current != 0.0)
{
/*
* make sure first run is always as zero
*/
val = 0.0;
}
else
{
/*
* otherwise run as normal
*/
val = current;
}
Eci eci = model.FindPosition(val);
Vector position = eci.GetPosition();
Vector velocity = eci.GetVelocity();
std::cout << std::setprecision(8) << std::fixed;
std::cout.width(17);
std::cout << val << " ";
std::cout.width(16);
std::cout << position.x << " ";
std::cout.width(16);
std::cout << position.y << " ";
std::cout.width(16);
std::cout << position.z << " ";
std::cout << std::setprecision(9) << std::fixed;
std::cout.width(14);
std::cout << velocity.x << " ";
std::cout.width(14);
std::cout << velocity.y << " ";
std::cout.width(14);
std::cout << velocity.z << std::endl;
}
catch (SatelliteException& e)
{
std::cout << e.what() << std::endl;
running = false;
}
if ((first_run && current == 0.0) || !first_run)
{
if (current == end)
{
running = false;
}
else if (current + inc > end)
{
current = end;
}
else
{
current += inc;
}
}
first_run = false;
}
}
void tokenize(const std::string& str, std::vector<std::string>& tokens)
{
const std::string& delimiters = " ";
/*
* skip delimiters at beginning
*/
std::string::size_type last_pos = str.find_first_not_of(delimiters, 0);
/*
* find first non-delimiter
*/
std::string::size_type pos = str.find_first_of(delimiters, last_pos);
while (std::string::npos != pos || std::string::npos != last_pos)
{
/*
* add found token to vector
*/
tokens.push_back(str.substr(last_pos, pos - last_pos));
/*
* skip delimiters
*/
last_pos = str.find_first_not_of(delimiters, pos);
/*
* find next non-delimiter
*/
pos = str.find_first_of(delimiters, last_pos);
}
}
void RunTest(const char* infile)
{
std::ifstream file;
file.open(infile);
if (!file.is_open())
{
std::cerr << "Error opening file" << std::endl;
return;
}
bool got_first_line = false;
std::string line1;
std::string line2;
std::string parameters;
while (!file.eof())
{
std::string line;
std::getline(file, line);
Util::Trim(line);
/*
* skip blank lines or lines starting with #
*/
if (line.length() == 0 || line[0] == '#')
{
got_first_line = false;
continue;
}
/*
* find first line
*/
if (!got_first_line)
{
try
{
Tle::IsValidLine(line, 1);
/*
* store line and now read in second line
*/
got_first_line = true;
line1 = line;
}
catch (TleException& e)
{
std::cerr << "Error: " << e.what() << std::endl;
std::cerr << line << std::endl;
}
}
else
{
/*
* no second chances, second line should follow the first
*/
got_first_line = false;
/*
* split line, first 69 is the second line of the tle
* the rest is the test parameters, if there is any
*/
line2 = line.substr(0, 69);
double start = 0.0;
double end = 1440.0;
double inc = 120.0;
if (line.length() > 69)
{
std::vector<std::string> tokens;
parameters = line.substr(70, line.length() - 69);
tokenize(parameters, tokens);
if (tokens.size() >= 3)
{
start = atof(tokens[0].c_str());
end = atof(tokens[1].c_str());
inc = atof(tokens[2].c_str());
}
}
/*
* following line must be the second line
*/
try
{
Tle::IsValidLine(line2, 2);
Tle tle("Test", line1, line2);
RunTle(tle, start, end, inc);
}
catch (TleException& e)
{
std::cerr << "Error: " << e.what() << std::endl;
std::cerr << line << std::endl;
}
}
}
/*
* close file
*/
file.close();
return;
}
int main()
{
const char* file_name = "SGP4-VER.TLE";
RunTest(file_name);
return 1;
}

2494
SGP4.cpp

File diff suppressed because it is too large Load Diff

View File

@ -1,46 +1,46 @@
#include "SolarPosition.h"
#include "Globals.h"
#include "Util.h"
#include <cmath>
Eci SolarPosition::FindPosition(const Julian& j)
{
const double mjd = j.FromJan1_12h_1900();
const double year = 1900 + mjd / 365.25;
const double T = (mjd + Delta_ET(year) / kSECONDS_PER_DAY) / 36525.0;
const double M = Util::DegreesToRadians(Util::Wrap360(358.47583
+ Util::Wrap360(35999.04975 * T)
- (0.000150 + 0.0000033 * T) * T * T));
const double L = Util::DegreesToRadians(Util::Wrap360(279.69668
+ Util::Wrap360(36000.76892 * T)
+ 0.0003025 * T*T));
const double e = 0.01675104 - (0.0000418 + 0.000000126 * T) * T;
const double C = Util::DegreesToRadians((1.919460
- (0.004789 + 0.000014 * T) * T) * sin(M)
+ (0.020094 - 0.000100 * T) * sin(2 * M)
+ 0.000293 * sin(3 * M));
const double O = Util::DegreesToRadians(
Util::Wrap360(259.18 - 1934.142 * T));
const double Lsa = Util::WrapTwoPI(L + C
- Util::DegreesToRadians(0.00569 - 0.00479 * sin(O)));
const double nu = Util::WrapTwoPI(M + C);
double R = 1.0000002 * (1 - e * e) / (1 + e * cos(nu));
const double eps = Util::DegreesToRadians(23.452294 - (0.0130125
+ (0.00000164 - 0.000000503 * T) * T) * T + 0.00256 * cos(O));
R = R * kAU;
Vector solar_position = Vector(R * cos(Lsa),
R * sin(Lsa) * cos(eps),
R * sin(Lsa) * sin(eps),
R);
return Eci(j, solar_position);
}
double SolarPosition::Delta_ET(double year) const
{
return 26.465 + 0.747622 * (year - 1950) + 1.886913
* sin(kTWOPI * (year - 1975) / 33);
}
#include "SolarPosition.h"
#include "Globals.h"
#include "Util.h"
#include <cmath>
Eci SolarPosition::FindPosition(const Julian& j)
{
const double mjd = j.FromJan1_12h_1900();
const double year = 1900 + mjd / 365.25;
const double T = (mjd + Delta_ET(year) / kSECONDS_PER_DAY) / 36525.0;
const double M = Util::DegreesToRadians(Util::Wrap360(358.47583
+ Util::Wrap360(35999.04975 * T)
- (0.000150 + 0.0000033 * T) * T * T));
const double L = Util::DegreesToRadians(Util::Wrap360(279.69668
+ Util::Wrap360(36000.76892 * T)
+ 0.0003025 * T*T));
const double e = 0.01675104 - (0.0000418 + 0.000000126 * T) * T;
const double C = Util::DegreesToRadians((1.919460
- (0.004789 + 0.000014 * T) * T) * sin(M)
+ (0.020094 - 0.000100 * T) * sin(2 * M)
+ 0.000293 * sin(3 * M));
const double O = Util::DegreesToRadians(
Util::Wrap360(259.18 - 1934.142 * T));
const double Lsa = Util::WrapTwoPI(L + C
- Util::DegreesToRadians(0.00569 - 0.00479 * sin(O)));
const double nu = Util::WrapTwoPI(M + C);
double R = 1.0000002 * (1 - e * e) / (1 + e * cos(nu));
const double eps = Util::DegreesToRadians(23.452294 - (0.0130125
+ (0.00000164 - 0.000000503 * T) * T) * T + 0.00256 * cos(O));
R = R * kAU;
Vector solar_position = Vector(R * cos(Lsa),
R * sin(Lsa) * cos(eps),
R * sin(Lsa) * sin(eps),
R);
return Eci(j, solar_position);
}
double SolarPosition::Delta_ET(double year) const
{
return 26.465 + 0.747622 * (year - 1950) + 1.886913
* sin(kTWOPI * (year - 1975) / 33);
}

View File

@ -1,175 +1,175 @@
#include "Timespan.h"
#include "Globals.h"
Timespan::Timespan()
: time_span_(0.0) {
}
Timespan::Timespan(const unsigned int days, const unsigned int hours,
const unsigned int minutes, const double seconds) {
SetValue(days, hours, minutes, seconds);
}
Timespan::Timespan(const double b) {
time_span_ = b;
}
Timespan::Timespan(const Timespan& b) {
time_span_ = b.time_span_;
}
Timespan::~Timespan(void) {
}
void Timespan::SetValue(const unsigned int days, const unsigned int hours,
const unsigned int minutes, const double seconds) {
time_span_ = static_cast<double> (days);
AddHours(hours);
AddMinutes(minutes);
AddSeconds(seconds);
}
void Timespan::AddDays(const unsigned int days) {
time_span_ += static_cast<double> (days);
}
void Timespan::AddHours(const unsigned int hours) {
time_span_ += (static_cast<double> (hours) / kHOURS_PER_DAY);
}
void Timespan::AddMinutes(const unsigned int minutes) {
time_span_ += (static_cast<double> (minutes) / kMINUTES_PER_DAY);
}
void Timespan::AddSeconds(const double seconds) {
time_span_ += (seconds / kSECONDS_PER_DAY);
}
double Timespan::GetTotalDays() const {
return time_span_;
}
double Timespan::GetTotalHours() const {
return time_span_ * kHOURS_PER_DAY;
}
double Timespan::GetTotalMinutes() const {
return time_span_ * kMINUTES_PER_DAY;
}
double Timespan::GetTotalSeconds() const {
return time_span_ * kSECONDS_PER_DAY;
}
Timespan& Timespan::operator =(const Timespan& b) {
if (this != &b) {
time_span_ = b.time_span_;
}
return (*this);
}
Timespan Timespan::operator +(const Timespan& b) const {
return Timespan(*this) += b;
}
Timespan Timespan::operator -(const Timespan& b) const {
return Timespan(*this) -= b;
}
Timespan Timespan::operator/(const double b) const {
return Timespan(*this) /= b;
}
Timespan Timespan::operator*(const double b) const {
return Timespan(*this) *= b;
}
Timespan & Timespan::operator+=(const Timespan& b) {
time_span_ += b.time_span_;
return (*this);
}
Timespan & Timespan::operator-=(const Timespan& b) {
time_span_ -= b.time_span_;
return (*this);
}
Timespan & Timespan::operator/=(const double b) {
time_span_ /= b;
return (*this);
}
Timespan & Timespan::operator*=(const double b) {
time_span_ *= b;
return (*this);
}
bool Timespan::operator ==(const Timespan& b) const {
if (time_span_ == b.time_span_)
return true;
else
return false;
}
bool Timespan::operator !=(const Timespan& b) const {
return !(*this == b);
}
bool Timespan::operator>(const Timespan& b) const {
if (time_span_ > b.time_span_)
return true;
else
return false;
}
bool Timespan::operator<(const Timespan& b) const {
if (time_span_ < b.time_span_)
return true;
else
return false;
}
bool Timespan::operator >=(const Timespan& b) const {
if (time_span_ >= b.time_span_)
return true;
else
return false;
}
bool Timespan::operator <=(const Timespan & b) const {
if (time_span_ <= b.time_span_)
return true;
else
return false;
}
double& operator +=(double& a, const Timespan& b) {
a += b.time_span_;
return a;
}
double& operator -=(double& a, const Timespan& b) {
a -= b.time_span_;
return a;
#include "Timespan.h"
#include "Globals.h"
Timespan::Timespan()
: time_span_(0.0) {
}
Timespan::Timespan(const unsigned int days, const unsigned int hours,
const unsigned int minutes, const double seconds) {
SetValue(days, hours, minutes, seconds);
}
Timespan::Timespan(const double b) {
time_span_ = b;
}
Timespan::Timespan(const Timespan& b) {
time_span_ = b.time_span_;
}
Timespan::~Timespan(void) {
}
void Timespan::SetValue(const unsigned int days, const unsigned int hours,
const unsigned int minutes, const double seconds) {
time_span_ = static_cast<double> (days);
AddHours(hours);
AddMinutes(minutes);
AddSeconds(seconds);
}
void Timespan::AddDays(const unsigned int days) {
time_span_ += static_cast<double> (days);
}
void Timespan::AddHours(const unsigned int hours) {
time_span_ += (static_cast<double> (hours) / kHOURS_PER_DAY);
}
void Timespan::AddMinutes(const unsigned int minutes) {
time_span_ += (static_cast<double> (minutes) / kMINUTES_PER_DAY);
}
void Timespan::AddSeconds(const double seconds) {
time_span_ += (seconds / kSECONDS_PER_DAY);
}
double Timespan::GetTotalDays() const {
return time_span_;
}
double Timespan::GetTotalHours() const {
return time_span_ * kHOURS_PER_DAY;
}
double Timespan::GetTotalMinutes() const {
return time_span_ * kMINUTES_PER_DAY;
}
double Timespan::GetTotalSeconds() const {
return time_span_ * kSECONDS_PER_DAY;
}
Timespan& Timespan::operator =(const Timespan& b) {
if (this != &b) {
time_span_ = b.time_span_;
}
return (*this);
}
Timespan Timespan::operator +(const Timespan& b) const {
return Timespan(*this) += b;
}
Timespan Timespan::operator -(const Timespan& b) const {
return Timespan(*this) -= b;
}
Timespan Timespan::operator/(const double b) const {
return Timespan(*this) /= b;
}
Timespan Timespan::operator*(const double b) const {
return Timespan(*this) *= b;
}
Timespan & Timespan::operator+=(const Timespan& b) {
time_span_ += b.time_span_;
return (*this);
}
Timespan & Timespan::operator-=(const Timespan& b) {
time_span_ -= b.time_span_;
return (*this);
}
Timespan & Timespan::operator/=(const double b) {
time_span_ /= b;
return (*this);
}
Timespan & Timespan::operator*=(const double b) {
time_span_ *= b;
return (*this);
}
bool Timespan::operator ==(const Timespan& b) const {
if (time_span_ == b.time_span_)
return true;
else
return false;
}
bool Timespan::operator !=(const Timespan& b) const {
return !(*this == b);
}
bool Timespan::operator>(const Timespan& b) const {
if (time_span_ > b.time_span_)
return true;
else
return false;
}
bool Timespan::operator<(const Timespan& b) const {
if (time_span_ < b.time_span_)
return true;
else
return false;
}
bool Timespan::operator >=(const Timespan& b) const {
if (time_span_ >= b.time_span_)
return true;
else
return false;
}
bool Timespan::operator <=(const Timespan & b) const {
if (time_span_ <= b.time_span_)
return true;
else
return false;
}
double& operator +=(double& a, const Timespan& b) {
a += b.time_span_;
return a;
}
double& operator -=(double& a, const Timespan& b) {
a -= b.time_span_;
return a;
}