microwave-project-unite/src/lib/variateMap.js

107 lines
2.7 KiB
JavaScript
Raw Normal View History

2023-01-09 01:55:54 +00:00
//产品枚举映射
export function productTypeMap(pdtype) {
const pdtypeMap = {
2023-01-11 01:15:17 +00:00
45: "正射产品",
46: "高程产品",
51: "后向散射系数产品",
52: "大气延迟校正产品",
53: "干涉测量形变产品",
39: "地表覆盖类型产品",
38: "土壤水分产品",
49: "土壤盐碱度产品",
50: "地表粗糙度产品",
48: "植被高度产品",
43: "叶面积指数产品",
47: "植被物候产品"
2023-01-09 01:55:54 +00:00
};
if (pdtype == null) return null;
else return pdtypeMap[pdtype];
}
//产品--样本类型映射
export function productTypeSplMap(pdtype) {
const pdtypeMap = {
2023-01-11 01:15:17 +00:00
45: "正射样本",
46: "高程样本",
51: "后向散射系数样本",
52: "大气延迟校正样本",
53: "干涉测量形变样本",
39: "地表覆盖类型样本",
38: "土壤水分样本",
49: "土壤盐碱度样本",
50: "地表粗糙度样本",
48: "植被高度样本",
43: "叶面积指数样本",
47: "植被物候样本"
2023-01-09 01:55:54 +00:00
};
if (pdtype == null) return null;
else return pdtypeMap[pdtype];
}
//真实性检验方法映射
export function truthFunctionsMap(truthFun) {
const truthFunMap = {
2023-01-11 01:15:17 +00:00
4: "平均误差",
9: "平均绝对误差",
5: "相对误差",
8: "平均相对误差",
24: "平均绝对相对误差",
6: "均方根误差",
23: "平面中误差",
2023-01-09 01:55:54 +00:00
7: "相关系数",
2023-01-11 01:15:17 +00:00
12: "误差矩阵",
14: "总体分类精度",
13: "Kappa系数",
2023-01-09 01:55:54 +00:00
11: "产品真值",
2023-01-11 01:15:17 +00:00
112: "正射误差列表"
2023-01-09 01:55:54 +00:00
};
if (truthFun == null) return null;
else return truthFunMap[truthFun];
}
// 抽样方法枚举转换
export function transformSlp(sampleFun) {
const sampleFunMap = {
2023-01-11 01:15:17 +00:00
"1": "随机抽样",
"2": "分层抽样",
"3": "等距抽样"
2023-01-09 01:55:54 +00:00
};
if (sampleFun == null) return null;
else return sampleFunMap[sampleFun];
}
// 像元级方法枚举转换
export function transformPcMethod(pixelDealFun) {
const pixelDealFunMap = {
2023-01-11 01:15:17 +00:00
"1": "均值法",
"6": "最邻近法",
"7": "克里格法",
"9": "块克里格法",
"10": "MSN法"
2023-01-09 01:55:54 +00:00
};
if (pixelDealFun == null) return null;
else return pixelDealFunMap[pixelDealFun];
}
export const PIXELDEALFUNOPTION = [
{
2023-01-11 01:15:17 +00:00
value: "1",
2023-01-09 01:55:54 +00:00
label: "均值法"
},
{
2023-01-11 01:15:17 +00:00
value: "6",
2023-01-09 01:55:54 +00:00
label: "最邻近法"
},
{
2023-01-11 01:15:17 +00:00
value: "7",
2023-01-09 01:55:54 +00:00
label: "克里格法"
},
{
2023-01-11 01:15:17 +00:00
value: "9",
2023-01-09 01:55:54 +00:00
label: "块克里格法"
},
{
2023-01-11 01:15:17 +00:00
value: "10",
2023-01-09 01:55:54 +00:00
label: "MSN法"
}
];