microproduct/atmosphericDelay-C-SAR/tool/LAI/LAIProcess.pyx

166 lines
5.5 KiB
Cython

#
# 模型计算的库
#
import cython
cimport cython # 必须导入
import numpy as np
cimport numpy as np
from libc.math cimport pi
from scipy.optimize import leastsq
import random
import logging
logger = logging.getLogger("mylog")
def WMCModel(param_arr,sample_lai,sample_soil,sample_inc,sample_sigma):
""" WMC模型 增加 归一化植被指数
Args:
param_arr (np.ndarray): 参数数组
sample_lai (double): 叶面积指数
sample_soil (double): 土壤含水量
sample_inc (double): 入射角(弧度值)
sample_sigma (double): 后向散射系数(线性值)
Returns:
double: 方程值
"""
# 映射参数,方便修改模型
A,B,C,D,M,N=param_arr # 在这里修改模型
V_lai=sample_lai
#V_lai=E*sample_lai+F
exp_gamma=np.exp(-2*B*((V_lai*D+C))*(1/np.cos(sample_inc)))
sigma_soil=M*sample_soil+N
sigma_veg=A*((V_lai))*np.cos(sample_inc)
f_veg=1
result=sigma_veg*(1-exp_gamma)+sigma_soil*exp_gamma-sample_sigma
return result
def train_WMCmodel(lai_water_inc_sigma_list,params_X0,train_err_image_path,draw_flag=True):
""" 训练模型参数
Args:
lai_waiter_inc_sigma_list (list): 训练模型使用的样本呢
"""
def f(X):
eqs=[]
for lai_water_inc_sigma_item in lai_water_inc_sigma_list:
sample_lai=lai_water_inc_sigma_item[4]
sample_sigma=lai_water_inc_sigma_item[5] # 5: csv_sigma, 8:tiff_sigma
sample_soil=lai_water_inc_sigma_item[6]
sample_inc=lai_water_inc_sigma_item[7]
FVC=lai_water_inc_sigma_item[8]
eqs.append(WMCModel(X,sample_lai,sample_soil,sample_inc,sample_sigma))
return eqs
X0 = params_X0 # 初始值
logger.info(str(X0))
h = leastsq(f, X0)
logger.info(h[0],h[1])
err_f=f(h[0])
x_arr=[lai_waiter_inc_sigma_item[4] for lai_waiter_inc_sigma_item in lai_water_inc_sigma_list]
# 根据误差大小进行排序
logger.info("训练集:\n根据误差输出点序\n数量:{}\n点序\t误差值\t 样点信息".format(str(np.array(err_f).shape)))
for i in np.argsort(np.array(err_f)):
logger.info('{}\t{}\t{}'.format(i,err_f[i],str(lai_water_inc_sigma_list[i])))
logger.info("\n误差点序输出结束\n")
if draw_flag:
logger.info(err_f)
logger.info(np.where(np.abs(err_f)<10))
from matplotlib import pyplot as plt
plt.scatter(x_arr,err_f)
plt.title("equation-err")
plt.savefig(train_err_image_path,dpi=600)
plt.show()
return h[0]
def test_WMCModel(lai_waiter_inc_sigma_list,param_arr,lai_X0,test_err_image_path,draw_flag=True):
""" 测试模型训练结果
Args:
lai_waiter_inc_sigma_list (list): 测试使用的样本集
A (_type_): 参数A
B (_type_): 参数B
C (_type_): 参数C
D (_type_): 参数D
M (_type_): 参数M
N (_type_): 参数N
lai_X0 (_type_): 初始值
Returns:
list: 误差列表 [sample_lai,err,predict]
"""
err=[]
err_f=[]
x_arr=[]
err_lai=[]
for lai_waiter_inc_sigma_item in lai_waiter_inc_sigma_list:
sample_time,sample_code,sample_lon,sample_lat,sample_lai,csv_sigma,sample_soil,sample_inc,sample_sigma=lai_waiter_inc_sigma_item
def f(X):
lai=X[0]
eqs=[WMCModel(param_arr,lai,sample_soil,sample_inc,csv_sigma)]
return eqs
X0=lai_X0
h = leastsq(f, X0)
temp_err=h[0]-sample_lai
err_lai.append(temp_err[0]) # lai预测的插值
err.append([sample_lai,temp_err[0],h[0][0],sample_code])
err_f.append(f(h[0])[0]) # 方程差
x_arr.append(sample_lai)
# 根据误差大小进行排序
logger.info("测试集:\n根据误差输出点序\n数量:{}\n点序\t误差值\t 方程差\t样点信息".format(str(np.array(err_lai).shape)))
for i in np.argsort(np.array(err_lai)):
logger.info('{}\t{}\t{}\t{}'.format(i,err_lai[i],err_f[i],str(lai_waiter_inc_sigma_list[i])))
logger.info("\n误差点序输出结束\n")
if draw_flag:
from matplotlib import pyplot as plt
plt.scatter(x_arr,err_lai)
plt.title("equation-err")
plt.savefig(test_err_image_path,dpi=600)
plt.show()
return err
def processs_WMCModel(param_arr,lai_X0,sigma,inc_angle,soil_water):
if(sigma<0 ):
return np.nan
def f(X):
lai=X[0]
eqs=[WMCModel(param_arr,lai,soil_water,inc_angle,sigma )]
return eqs
h = leastsq(f, [lai_X0])
return h[0][0]
# Cython 的扩展地址
cpdef np.ndarray[double,ndim=2] process_tiff(np.ndarray[double,ndim=2] sigma_tiff,
np.ndarray[double,ndim=2] inc_tiff,
np.ndarray[double,ndim=2] soil_water_tiff,
np.ndarray[double,ndim=1] param_arr,
double lai_X0):
cdef np.ndarray[double,ndim=2] result=sigma_tiff
cdef int param_arr_length=param_arr.shape[0]
cdef int height=sigma_tiff.shape[0]
cdef int width=sigma_tiff.shape[1]
cdef int i=0
cdef int j=0
cdef double temp=0
while i<height:
j=0
while j<width:
temp = processs_WMCModel(param_arr,lai_X0,sigma_tiff[i,j],inc_tiff[i,j],soil_water_tiff[i,j])
temp=temp if temp<10 and temp>=0 else np.nan
result[i,j]=temp
j=j+1
i=i+1
return result