microproduct/deformation-sentiral/smallbaselineApp/skimage/morphology/binary.py

158 lines
5.2 KiB
Python

"""
Binary morphological operations
"""
import numpy as np
from scipy import ndimage as ndi
from .._shared.utils import deprecate_kwarg
from .misc import default_footprint
# The default_footprint decorator provides a diamond footprint as
# default with the same dimension as the input image and size 3 along each
# axis.
@default_footprint
@deprecate_kwarg(kwarg_mapping={'selem': 'footprint'}, removed_version="1.0",
deprecated_version="0.19")
def binary_erosion(image, footprint=None, out=None):
"""Return fast binary morphological erosion of an image.
This function returns the same result as grayscale erosion but performs
faster for binary images.
Morphological erosion sets a pixel at ``(i,j)`` to the minimum over all
pixels in the neighborhood centered at ``(i,j)``. Erosion shrinks bright
regions and enlarges dark regions.
Parameters
----------
image : ndarray
Binary input image.
footprint : ndarray, optional
The neighborhood expressed as a 2-D array of 1's and 0's.
If None, use a cross-shaped footprint (connectivity=1).
out : ndarray of bool, optional
The array to store the result of the morphology. If None is
passed, a new array will be allocated.
Returns
-------
eroded : ndarray of bool or uint
The result of the morphological erosion taking values in
``[False, True]``.
"""
if out is None:
out = np.empty(image.shape, dtype=bool)
ndi.binary_erosion(image, structure=footprint, output=out,
border_value=True)
return out
@default_footprint
@deprecate_kwarg(kwarg_mapping={'selem': 'footprint'}, removed_version="1.0",
deprecated_version="0.19")
def binary_dilation(image, footprint=None, out=None):
"""Return fast binary morphological dilation of an image.
This function returns the same result as grayscale dilation but performs
faster for binary images.
Morphological dilation sets a pixel at ``(i,j)`` to the maximum over all
pixels in the neighborhood centered at ``(i,j)``. Dilation enlarges bright
regions and shrinks dark regions.
Parameters
----------
image : ndarray
Binary input image.
footprint : ndarray, optional
The neighborhood expressed as a 2-D array of 1's and 0's.
If None, use a cross-shaped footprint (connectivity=1).
out : ndarray of bool, optional
The array to store the result of the morphology. If None is
passed, a new array will be allocated.
Returns
-------
dilated : ndarray of bool or uint
The result of the morphological dilation with values in
``[False, True]``.
"""
if out is None:
out = np.empty(image.shape, dtype=bool)
ndi.binary_dilation(image, structure=footprint, output=out)
return out
@default_footprint
@deprecate_kwarg(kwarg_mapping={'selem': 'footprint'}, removed_version="1.0",
deprecated_version="0.19")
def binary_opening(image, footprint=None, out=None):
"""Return fast binary morphological opening of an image.
This function returns the same result as grayscale opening but performs
faster for binary images.
The morphological opening on an image is defined as an erosion followed by
a dilation. Opening can remove small bright spots (i.e. "salt") and connect
small dark cracks. This tends to "open" up (dark) gaps between (bright)
features.
Parameters
----------
image : ndarray
Binary input image.
footprint : ndarray, optional
The neighborhood expressed as a 2-D array of 1's and 0's.
If None, use a cross-shaped footprint (connectivity=1).
out : ndarray of bool, optional
The array to store the result of the morphology. If None
is passed, a new array will be allocated.
Returns
-------
opening : ndarray of bool
The result of the morphological opening.
"""
eroded = binary_erosion(image, footprint)
out = binary_dilation(eroded, footprint, out=out)
return out
@default_footprint
@deprecate_kwarg(kwarg_mapping={'selem': 'footprint'}, removed_version="1.0",
deprecated_version="0.19")
def binary_closing(image, footprint=None, out=None):
"""Return fast binary morphological closing of an image.
This function returns the same result as grayscale closing but performs
faster for binary images.
The morphological closing on an image is defined as a dilation followed by
an erosion. Closing can remove small dark spots (i.e. "pepper") and connect
small bright cracks. This tends to "close" up (dark) gaps between (bright)
features.
Parameters
----------
image : ndarray
Binary input image.
footprint : ndarray, optional
The neighborhood expressed as a 2-D array of 1's and 0's.
If None, use a cross-shaped footprint (connectivity=1).
out : ndarray of bool, optional
The array to store the result of the morphology. If None,
is passed, a new array will be allocated.
Returns
-------
closing : ndarray of bool
The result of the morphological closing.
"""
dilated = binary_dilation(image, footprint)
out = binary_erosion(dilated, footprint, out=out)
return out