microproduct/deformation-sentiral/smallbaselineApp/pywt/tests/test_wpnd.py

172 lines
6.1 KiB
Python

#!/usr/bin/env python
from __future__ import division, print_function, absolute_import
from itertools import product
from functools import reduce
import operator
import numpy as np
from numpy.testing import (assert_allclose, assert_, assert_raises,
assert_equal)
import pywt
def test_traversing_tree_nd():
x = np.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, dtype=np.float64)
wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric')
assert_(np.all(wp.data == x))
assert_(wp.path == '')
assert_(wp.level == 0)
assert_(wp.maxlevel == 3)
assert_allclose(wp['aa'].data, np.array([[3., 7., 11., 15.]] * 4),
rtol=1e-12)
assert_allclose(wp['da'].data, np.zeros((4, 4)), rtol=1e-12, atol=1e-14)
assert_allclose(wp['ad'].data, -np.ones((4, 4)), rtol=1e-12, atol=1e-14)
assert_allclose(wp['dd'].data, np.zeros((4, 4)), rtol=1e-12, atol=1e-14)
assert_allclose(wp['aa'*2].data, np.array([[10., 26.]] * 2), rtol=1e-12)
# __getitem__ using a tuple acces instead
assert_allclose(wp[('aa', 'aa')].data, np.array([[10., 26.]] * 2),
rtol=1e-12)
assert_(wp['aa']['aa'].data is wp['aa'*2].data)
assert_allclose(wp['aa'*3].data, np.array([[36.]]), rtol=1e-12)
assert_raises(IndexError, lambda: wp['aa'*(wp.maxlevel+1)])
assert_raises(ValueError, lambda: wp['f'])
# getitem input must be a string or tuple of strings
assert_raises(TypeError, wp.__getitem__, (5, 3))
assert_raises(TypeError, wp.__getitem__, 5)
def test_accessing_node_attributes_nd():
x = np.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, dtype=np.float64)
wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric')
assert_allclose(wp['aa'+'ad'].data, np.zeros((2, 2)) - 4, rtol=1e-12)
assert_(wp['aa'+'ad'].path == 'aa'+'ad')
assert_(wp['aa'+'ad'].node_name == 'ad')
assert_(wp['aa'+'ad'].parent.path == 'aa')
assert_allclose(wp['aa'+'ad'].parent.data,
np.array([[3., 7., 11., 15.]] * 4), rtol=1e-12)
# can also index via a tuple instead of concatenated strings
assert_(wp[('aa', 'ad')].level == 2)
assert_(wp[('aa', 'ad')].maxlevel == 3)
assert_(wp[('aa', 'ad')].mode == 'symmetric')
# can access a node's path as either a single string or in tuple form
node = wp[('ad', 'dd')]
assert_(node.path == 'addd')
assert_(node.path_tuple == ('ad', 'dd'))
def test_collecting_nodes_nd():
x = np.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, dtype=np.float64)
wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric')
assert_(len(wp.get_level(0)) == 1)
assert_(wp.get_level(0)[0].path == '')
# First level
assert_(len(wp.get_level(1)) == 4)
assert_(
[node.path for node in wp.get_level(1)] == ['aa', 'ad', 'da', 'dd'])
# Second and third levels
for lev in [2, 3]:
assert_(len(wp.get_level(lev)) == (2**x.ndim)**lev)
paths = [node.path for node in wp.get_level(lev)]
expected_paths = [
reduce(operator.add, p) for
p in sorted(product(['aa', 'ad', 'da', 'dd'], repeat=lev))]
assert_(paths == expected_paths)
def test_data_reconstruction_delete_nodes_nd():
x = np.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, dtype=np.float64)
wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric')
# The user must supply either data or axes
assert_raises(ValueError, pywt.WaveletPacketND, data=None, wavelet='db1',
axes=None)
new_wp = pywt.WaveletPacketND(data=None, wavelet='db1', mode='symmetric',
axes=range(x.ndim))
new_wp['ad'+'da'] = wp['ad'+'da'].data
new_wp['ad'*2] = wp['ad'+'da'].data
new_wp['ad'+'dd'] = np.zeros((2, 2), dtype=np.float64)
new_wp['aa'] = [[3.0, 7.0, 11.0, 15.0]] * 4
new_wp['dd'] = np.zeros((4, 4), dtype=np.float64)
new_wp['da'] = wp['da'] # all zeros
assert_allclose(new_wp.reconstruct(update=False),
np.array([[1.5, 1.5, 3.5, 3.5, 5.5, 5.5, 7.5, 7.5]] * 8),
rtol=1e-12)
new_wp['ad'+'aa'] = wp['ad'+'aa'].data
assert_allclose(new_wp.reconstruct(update=False), x, rtol=1e-12)
del(new_wp['ad'+'aa'])
# TypeError on accessing deleted node
assert_raises(TypeError, lambda: new_wp['ad'+'aa'])
new_wp['ad'+'aa'] = wp['ad'+'aa'].data
assert_(new_wp.data is None)
assert_allclose(new_wp.reconstruct(update=True), x, rtol=1e-12)
assert_allclose(new_wp.data, x, rtol=1e-12)
# TODO: decompose=True
def test_wavelet_packet_dtypes():
shape = (16, 8, 8)
for dtype in [np.float32, np.float64, np.complex64, np.complex128]:
x = np.random.randn(*shape).astype(dtype)
if np.iscomplexobj(x):
x = x + 1j*np.random.randn(*shape).astype(x.real.dtype)
wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric')
# no unnecessary copy made
assert_(wp.data is x)
# full decomposition
wp.get_level(wp.maxlevel)
# reconstruction from coefficients should preserve dtype
r = wp.reconstruct(False)
assert_equal(r.dtype, x.dtype)
assert_allclose(r, x, atol=1e-6, rtol=1e-6)
def test_wavelet_packet_axes():
rstate = np.random.RandomState(0)
shape = (32, 16, 8)
x = rstate.standard_normal(shape)
for axes in [(0, 1), 1, (-3, -2, -1), (0, 2), (1, )]:
wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric',
axes=axes)
# partial decomposition
nodes = wp.get_level(1)
# size along the transformed axes has changed
for ax2 in range(x.ndim):
if ax2 in tuple(np.atleast_1d(axes) % x.ndim):
nodes[0].data.shape[ax2] < x.shape[ax2]
else:
nodes[0].data.shape[ax2] == x.shape[ax2]
# recontsruction from coefficients should preserve dtype
r = wp.reconstruct(False)
assert_equal(r.dtype, x.dtype)
assert_allclose(r, x, atol=1e-12, rtol=1e-12)
# must have non-duplicate axes
assert_raises(ValueError, pywt.WaveletPacketND, data=x, wavelet='db1',
axes=(0, 0))