378 lines
12 KiB
Python
378 lines
12 KiB
Python
# -*- coding: UTF-8 -*-
|
||
"""
|
||
@Project :microproduct
|
||
@File :Imagehandle.py
|
||
@Function :实现对待处理SAR数据的读取、格式标准化和处理完后保存文件功能
|
||
@Author :SHJ
|
||
@Date :2021/10/15
|
||
@Version :1.0.0
|
||
"""
|
||
import logging
|
||
import os
|
||
from osgeo import gdal
|
||
import numpy as np
|
||
from PIL import Image
|
||
import cv2
|
||
|
||
|
||
logger = logging.getLogger("mylog")
|
||
|
||
|
||
class ImageHandler:
|
||
"""
|
||
影像读取、编辑、保存
|
||
"""
|
||
def __init__(self):
|
||
pass
|
||
@staticmethod
|
||
def get_dataset(filename):
|
||
"""
|
||
:param filename: tif路径
|
||
:return: 图像句柄
|
||
"""
|
||
gdal.AllRegister()
|
||
dataset = gdal.Open(filename)
|
||
if dataset is None:
|
||
return None
|
||
return dataset
|
||
|
||
def get_scope(self, filename):
|
||
"""
|
||
:param filename: tif路径
|
||
:return: 图像范围
|
||
"""
|
||
gdal.AllRegister()
|
||
dataset = gdal.Open(filename)
|
||
if dataset is None:
|
||
return None
|
||
im_scope = self.cal_img_scope(dataset)
|
||
del dataset
|
||
return im_scope
|
||
|
||
@staticmethod
|
||
def get_projection(filename):
|
||
"""
|
||
:param filename: tif路径
|
||
:return: 地图投影信息
|
||
"""
|
||
gdal.AllRegister()
|
||
dataset = gdal.Open(filename)
|
||
if dataset is None:
|
||
return None
|
||
im_proj = dataset.GetProjection()
|
||
del dataset
|
||
return im_proj
|
||
|
||
@staticmethod
|
||
def get_geotransform(filename):
|
||
"""
|
||
:param filename: tif路径
|
||
:return: 从图像坐标空间(行、列),也称为(像素、线)到地理参考坐标空间(投影或地理坐标)的仿射变换
|
||
"""
|
||
gdal.AllRegister()
|
||
dataset = gdal.Open(filename)
|
||
if dataset is None:
|
||
return None
|
||
geotransform = dataset.GetGeoTransform()
|
||
del dataset
|
||
return geotransform
|
||
|
||
@staticmethod
|
||
def get_bands(filename):
|
||
"""
|
||
:param filename: tif路径
|
||
:return: 影像的波段数
|
||
"""
|
||
gdal.AllRegister()
|
||
dataset = gdal.Open(filename)
|
||
if dataset is None:
|
||
return None
|
||
bands = dataset.RasterCount
|
||
del dataset
|
||
return bands
|
||
|
||
@staticmethod
|
||
def get_band_array(filename, num=1):
|
||
"""
|
||
:param filename: tif路径
|
||
:param num: 波段序号
|
||
:return: 对应波段的矩阵数据
|
||
"""
|
||
gdal.AllRegister()
|
||
dataset = gdal.Open(filename)
|
||
if dataset is None:
|
||
return None
|
||
bands = dataset.GetRasterBand(num)
|
||
array = bands.ReadAsArray(0, 0, bands.XSize, bands.YSize)
|
||
del dataset
|
||
return array
|
||
|
||
@staticmethod
|
||
def get_data(filename):
|
||
"""
|
||
:param filename: tif路径
|
||
:return: 获取所有波段的数据
|
||
"""
|
||
gdal.AllRegister()
|
||
dataset = gdal.Open(filename)
|
||
if dataset is None:
|
||
return None
|
||
im_width = dataset.RasterXSize
|
||
im_height = dataset.RasterYSize
|
||
im_data = dataset.ReadAsArray(0, 0, im_width, im_height)
|
||
del dataset
|
||
return im_data
|
||
|
||
@staticmethod
|
||
def get_img_width(filename):
|
||
"""
|
||
:param filename: tif路径
|
||
:return: 影像宽度
|
||
"""
|
||
gdal.AllRegister()
|
||
dataset = gdal.Open(filename)
|
||
if dataset is None:
|
||
return None
|
||
width = dataset.RasterXSize
|
||
|
||
del dataset
|
||
return width
|
||
|
||
@staticmethod
|
||
def get_img_height(filename):
|
||
"""
|
||
:param filename: tif路径
|
||
:return: 影像高度
|
||
"""
|
||
gdal.AllRegister()
|
||
dataset = gdal.Open(filename)
|
||
if dataset is None:
|
||
return None
|
||
height = dataset.RasterYSize
|
||
del dataset
|
||
return height
|
||
|
||
@staticmethod
|
||
def read_img(filename):
|
||
"""
|
||
影像读取
|
||
:param filename:
|
||
:return:
|
||
"""
|
||
gdal.AllRegister()
|
||
img_dataset = gdal.Open(filename) # 打开文件
|
||
|
||
if img_dataset is None:
|
||
msg = 'Could not open ' + filename
|
||
logger.error(msg)
|
||
return None, None, None
|
||
|
||
im_proj = img_dataset.GetProjection() # 地图投影信息
|
||
if im_proj is None:
|
||
return None, None, None
|
||
im_geotrans = img_dataset.GetGeoTransform() # 仿射矩阵
|
||
|
||
im_width = img_dataset.RasterXSize # 栅格矩阵的行数
|
||
im_height = img_dataset.RasterYSize # 栅格矩阵的行数
|
||
im_arr = img_dataset.ReadAsArray(0, 0, im_width, im_height)
|
||
del img_dataset
|
||
return im_proj, im_geotrans, im_arr
|
||
|
||
def cal_img_scope(self, dataset):
|
||
"""
|
||
计算影像的地理坐标范围
|
||
根据GDAL的六参数模型将影像图上坐标(行列号)转为投影坐标或地理坐标(根据具体数据的坐标系统转换)
|
||
:param dataset :GDAL地理数据
|
||
:return: list[point_upleft, point_upright, point_downleft, point_downright]
|
||
"""
|
||
if dataset is None:
|
||
return None
|
||
|
||
img_geotrans = dataset.GetGeoTransform()
|
||
if img_geotrans is None:
|
||
return None
|
||
|
||
width = dataset.RasterXSize # 栅格矩阵的列数
|
||
height = dataset.RasterYSize # 栅格矩阵的行数
|
||
|
||
point_upleft = self.trans_rowcol2geo(img_geotrans, 0, 0)
|
||
point_upright = self.trans_rowcol2geo(img_geotrans, width, 0)
|
||
point_downleft = self.trans_rowcol2geo(img_geotrans, 0, height)
|
||
point_downright = self.trans_rowcol2geo(img_geotrans, width, height)
|
||
|
||
return [point_upleft, point_upright, point_downleft, point_downright]
|
||
|
||
@staticmethod
|
||
def trans_rowcol2geo(img_geotrans,img_col, img_row):
|
||
"""
|
||
据GDAL的六参数模型仿射矩阵将影像图上坐标(行列号)转为投影坐标或地理坐标(根据具体数据的坐标系统转换)
|
||
:param img_geotrans: 仿射矩阵
|
||
:param img_col:图像纵坐标
|
||
:param img_row:图像横坐标
|
||
:return: [geo_x,geo_y]
|
||
"""
|
||
geo_x = img_geotrans[0] + img_geotrans[1] * img_col + img_geotrans[2]* img_row
|
||
geo_y = img_geotrans[3] + img_geotrans[4] * img_col + img_geotrans[5]* img_row
|
||
return [geo_x, geo_y]
|
||
|
||
@staticmethod
|
||
def write_img(filename, im_proj, im_geotrans, im_data):
|
||
"""
|
||
影像保存
|
||
:param filename:
|
||
:param im_proj:
|
||
:param im_geotrans:
|
||
:param im_data:
|
||
:return:
|
||
"""
|
||
|
||
gdal_dtypes = {
|
||
'int8': gdal.GDT_Byte,
|
||
'unit16': gdal.GDT_UInt16,
|
||
'int16': gdal.GDT_Int16,
|
||
'unit32': gdal.GDT_UInt32,
|
||
'int32': gdal.GDT_Int32,
|
||
'float32': gdal.GDT_Float32,
|
||
'float64': gdal.GDT_Float64,
|
||
}
|
||
if not gdal_dtypes.get(im_data.dtype.name, None) is None:
|
||
datatype = gdal_dtypes[im_data.dtype.name]
|
||
else:
|
||
datatype = gdal.GDT_Float32
|
||
|
||
# 判读数组维数
|
||
if len(im_data.shape) == 3:
|
||
im_bands,im_height, im_width, = im_data.shape
|
||
else:
|
||
im_bands, (im_height, im_width) = 1, im_data.shape
|
||
|
||
# 创建文件
|
||
if os.path.exists(os.path.split(filename)[0]) is False:
|
||
os.makedirs(os.path.split(filename)[0])
|
||
|
||
driver = gdal.GetDriverByName("GTiff") # 数据类型必须有,因为要计算需要多大内存空间
|
||
dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)
|
||
|
||
dataset.SetGeoTransform(im_geotrans) # 写入仿射变换参数
|
||
|
||
dataset.SetProjection(im_proj) # 写入投影
|
||
|
||
if im_bands == 1:
|
||
dataset.GetRasterBand(1).WriteArray(im_data) # 写入数组数据
|
||
else:
|
||
for i in range(im_bands):
|
||
# dataset.GetRasterBand(i + 1).WriteArray(im_data[:, :, im_bands - 1 - i])
|
||
dataset.GetRasterBand(i + 1).WriteArray(im_data[i])
|
||
del dataset
|
||
|
||
# 写GeoTiff文件
|
||
|
||
@staticmethod
|
||
def write_img_rpc(filename, im_proj, im_geotrans, im_data, rpc_dict):
|
||
"""
|
||
图像中写入rpc信息
|
||
"""
|
||
# 判断栅格数据的数据类型
|
||
if 'int8' in im_data.dtype.name:
|
||
datatype = gdal.GDT_Byte
|
||
elif 'int16' in im_data.dtype.name:
|
||
datatype = gdal.GDT_Int16
|
||
else:
|
||
datatype = gdal.GDT_Float32
|
||
|
||
# 判读数组维数
|
||
if len(im_data.shape) == 3:
|
||
im_bands, im_height, im_width = im_data.shape
|
||
else:
|
||
im_bands, (im_height, im_width) = 1, im_data.shape
|
||
|
||
# 创建文件
|
||
driver = gdal.GetDriverByName("GTiff")
|
||
dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)
|
||
|
||
dataset.SetGeoTransform(im_geotrans) # 写入仿射变换参数
|
||
dataset.SetProjection(im_proj) # 写入投影
|
||
|
||
# 写入RPC参数
|
||
for k in rpc_dict.keys():
|
||
dataset.SetMetadataItem(k, rpc_dict[k], 'RPC')
|
||
|
||
if im_bands == 1:
|
||
dataset.GetRasterBand(1).WriteArray(im_data) # 写入数组数据
|
||
else:
|
||
for i in range(im_bands):
|
||
dataset.GetRasterBand(i + 1).WriteArray(im_data[i])
|
||
|
||
del dataset
|
||
|
||
|
||
def transtif2mask(self,out_tif_path, in_tif_path, threshold):
|
||
"""
|
||
:param out_tif_path:输出路径
|
||
:param in_tif_path:输入的路径
|
||
:param threshold:阈值
|
||
"""
|
||
im_proj, im_geotrans, im_arr, im_scope = self.read_img(in_tif_path)
|
||
im_arr_mask = (im_arr < threshold).astype(int)
|
||
self.write_img(out_tif_path, im_proj, im_geotrans, im_arr_mask)
|
||
|
||
def write_quick_view(self, tif_path, color_img=False, quick_view_path=None):
|
||
"""
|
||
生成快视图,默认快视图和影像同路径且同名
|
||
:param tif_path:影像路径
|
||
:param color_img:是否生成随机伪彩色图
|
||
:param quick_view_path:快视图路径
|
||
"""
|
||
if quick_view_path is None:
|
||
quick_view_path = os.path.splitext(tif_path)[0]+'.jpg'
|
||
|
||
n = self.get_bands(tif_path)
|
||
if n == 1: # 单波段
|
||
t_data = self.get_data(tif_path)
|
||
else: # 多波段,转为强度数据
|
||
t_data = self.get_data(tif_path)
|
||
t_data = t_data.astype(float)
|
||
t_data = np.sqrt(t_data[0] ** 2 + t_data[1] ** 2)
|
||
|
||
t_r = self.get_img_height(tif_path)
|
||
t_c = self.get_img_width(tif_path)
|
||
if t_r > 1024 or t_c > 1024:
|
||
if t_r > t_c:
|
||
q_r = 1024
|
||
q_c = int(t_c/t_r * 1024)
|
||
else:
|
||
q_c = 1024
|
||
q_r = int(t_r/t_c * 1024)
|
||
else:
|
||
q_r = t_r
|
||
q_c = t_c
|
||
|
||
if color_img is True:
|
||
# 生成伪彩色图
|
||
img = np.zeros((t_r, t_c, 3), dtype=np.uint8) # (高,宽,维度)
|
||
u = np.unique(t_data)
|
||
for i in u:
|
||
if i != 0:
|
||
w = np.where(t_data == i)
|
||
img[w[0], w[1], 0] = np.random.randint(0, 255) # 随机生成一个0到255之间的整数 可以通过挑参数设定不同的颜色范围
|
||
img[w[0], w[1], 1] = np.random.randint(0, 255)
|
||
img[w[0], w[1], 2] = np.random.randint(0, 255)
|
||
|
||
img = cv2.resize(img, (q_c, q_r)) # (宽,高)
|
||
cv2.imwrite(quick_view_path, img)
|
||
# cv2.imshow("result4", img)
|
||
# cv2.waitKey(0)
|
||
else:
|
||
# 灰度图
|
||
t_data = (t_data - np.min(t_data)) / (np.max(t_data) - np.min(t_data)) * 255
|
||
out_img = Image.fromarray(t_data)
|
||
out_img = out_img.resize((q_r, q_c)) # 重采样
|
||
out_img = out_img.convert("L") # 转换成灰度图
|
||
out_img.save(quick_view_path)
|
||
|
||
if __name__ == '__main__':
|
||
ih = ImageHandler()
|
||
path = 'D:\Dual1_1_feature1.tif'
|
||
# ih.write_quick_view(path, color_img=False)
|
||
print('done')
|