microproduct/atmosphericDelay/ISCEApp/site-packages/whoosh/matching/combo.py

313 lines
9.7 KiB
Python

# Copyright 2010 Matt Chaput. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Matt Chaput.
from __future__ import division
from array import array
from whoosh.compat import xrange
from whoosh.matching import mcore
class CombinationMatcher(mcore.Matcher):
def __init__(self, submatchers, boost=1.0):
self._submatchers = submatchers
self._boost = boost
def supports_block_quality(self):
return all(m.supports_block_quality() for m in self._submatchers)
def max_quality(self):
return max(m.max_quality() for m in self._submatchers
if m.is_active()) * self._boost
def supports(self, astype):
return all(m.supports(astype) for m in self._submatchers)
def children(self):
return iter(self._submatchers)
def score(self):
return sum(m.score() for m in self._submatchers) * self._boost
class PreloadedUnionMatcher(CombinationMatcher):
"""Instead of marching the sub-matchers along in parallel, this
matcher pre-reads the scores for EVERY MATCHING DOCUMENT, trading memory
for speed.
This is faster than the implementation using a binary tree of
:class:`~whoosh.matching.binary.UnionMatcher` objects (possibly just
because of less overhead), but it doesn't allow getting information about
the "current" document other than the score, because there isn't really a
current document, just an array of scores.
"""
def __init__(self, submatchers, doccount, boost=1.0, scored=True):
CombinationMatcher.__init__(self, submatchers, boost=boost)
self._doccount = doccount
a = array("d")
active = [subm for subm in self._submatchers if subm.is_active()]
if active:
offset = self._docnum = min(m.id() for m in active)
for m in active:
while m.is_active():
if scored:
score = m.score() * boost
else:
score = boost
docnum = m.id()
place = docnum - offset
if len(a) <= place:
a.extend(0 for _ in xrange(place - len(a) + 1))
a[place] += score
m.next()
self._a = a
self._offset = offset
else:
self._docnum = 0
self._offset = 0
self._a = a
def is_active(self):
return self._docnum - self._offset < len(self._a)
def id(self):
return self._docnum
def score(self):
return self._a[self._docnum - self._offset]
def next(self):
a = self._a
offset = self._offset
place = self._docnum - offset
place += 1
while place < len(a) and a[place] == 0:
place += 1
self._docnum = place + offset
def max_quality(self):
return max(self._a[self._docnum - self._offset:])
def block_quality(self):
return self.max_quality()
def skip_to(self, docnum):
if docnum < self._docnum:
return
self._docnum = docnum
i = docnum - self._offset
if i < len(self._a) and self._a[i] == 0:
self.next()
def skip_to_quality(self, minquality):
a = self._a
offset = self._offset
place = self._docnum - offset
skipped = 0
while place < len(a) and a[place] <= minquality:
place += 1
skipped = 1
self._docnum = place + offset
return skipped
def supports(self, astype):
# This matcher doesn't support any posting values
return False
def all_ids(self):
a = self._a
offset = self._offset
place = self._docnum - offset
while place < len(a):
if a[place] > 0:
yield place + offset
place += 1
class ArrayUnionMatcher(CombinationMatcher):
"""Instead of marching the sub-matchers along in parallel, this matcher
pre-reads the scores for a large block of documents at a time from each
matcher, accumulating the scores in an array.
This is faster than the implementation using a binary tree of
:class:`~whoosh.matching.binary.UnionMatcher` objects (possibly just
because of less overhead), but it doesn't allow getting information about
the "current" document other than the score, because there isn't really a
current document, just an array of scores.
"""
def __init__(self, submatchers, doccount, boost=1.0, scored=True,
partsize=2048):
CombinationMatcher.__init__(self, submatchers, boost=boost)
self._scored = scored
self._doccount = doccount
if not partsize:
partsize = doccount
self._partsize = partsize
self._a = array("d", (0 for _ in xrange(self._partsize)))
self._docnum = self._min_id()
self._read_part()
def __repr__(self):
return ("%s(%r, boost=%f, scored=%r, partsize=%d)"
% (self.__class__.__name__, self._submatchers, self._boost,
self._scored, self._partsize))
def _min_id(self):
active = [subm for subm in self._submatchers if subm.is_active()]
if active:
return min(subm.id() for subm in active)
else:
return self._doccount
def _read_part(self):
scored = self._scored
boost = self._boost
limit = min(self._docnum + self._partsize, self._doccount)
offset = self._docnum
a = self._a
# Clear the array
for i in xrange(self._partsize):
a[i] = 0
# Add the scores from the submatchers into the array
for m in self._submatchers:
while m.is_active() and m.id() < limit:
i = m.id() - offset
if scored:
a[i] += m.score() * boost
else:
a[i] = 1
m.next()
self._offset = offset
self._limit = limit
def _find_next(self):
a = self._a
docnum = self._docnum
offset = self._offset
limit = self._limit
while docnum < limit:
if a[docnum - offset] > 0:
break
docnum += 1
if docnum == limit:
self._docnum = self._min_id()
self._read_part()
else:
self._docnum = docnum
def supports(self, astype):
# This matcher doesn't support any posting values
return False
def is_active(self):
return self._docnum < self._doccount
def max_quality(self):
return max(m.max_quality() for m in self._submatchers)
def block_quality(self):
return max(self._a)
def skip_to(self, docnum):
if docnum < self._offset:
# We've already passed it
return
elif docnum < self._limit:
# It's in the current part
self._docnum = docnum
self._find_next()
return
# Advance all active submatchers
submatchers = self._submatchers
active = False
for subm in submatchers:
if subm.is_active():
subm.skip_to(docnum)
if any(subm.is_active() for subm in submatchers):
# Rebuffer
self._docnum = self._min_id()
self._read_part()
else:
self._docnum = self._doccount
def skip_to_quality(self, minquality):
skipped = 0
while self.is_active() and self.block_quality() <= minquality:
skipped += 1
self._docnum = self._limit
self._read_part()
if self.is_active():
self._find_next()
return skipped
def id(self):
return self._docnum
def all_ids(self):
doccount = self._doccount
docnum = self._docnum
offset = self._offset
limit = self._limit
a = self._a
while docnum < doccount:
if a[docnum - offset] > 0:
yield docnum
docnum += 1
if docnum == limit:
self._docnum = docnum
self._read_part()
offset = self._offset
limit = self._limit
def next(self):
self._docnum += 1
return self._find_next()
def score(self):
return self._a[self._docnum - self._offset]