microproduct/atmosphericDelay/ISCEApp/site-packages/whoosh/automata/nfa.py

389 lines
10 KiB
Python

# Copyright 2012 Matt Chaput. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Matt Chaput.
from whoosh.automata.fst import Arc
class Instruction(object):
def __repr__(self):
return "%s()" % (self.__class__.__name__, )
class Char(Instruction):
"""
Matches a literal character.
"""
def __init__(self, c):
self.c = c
def __repr__(self):
return "Char(%r)" % self.c
class Lit(Instruction):
"""
Matches a literal string.
"""
def __init__(self, c):
self.c = c
def __repr__(self):
return "Lit(%r)" % self.c
class Any(Instruction):
"""
Matches any character.
"""
class Match(Instruction):
"""
Stop this thread: the string matched.
"""
def __repr__(self):
return "Match()"
class Jmp(Instruction):
"""
Jump to a specified instruction.
"""
def __init__(self, x):
self.x = x
def __repr__(self):
return "Jmp(%s)" % self.x
class Split(Instruction):
"""
Split execution: continue at two separate specified instructions.
"""
def __init__(self, x, y):
self.x = x
self.y = y
def __repr__(self):
return "Split(%s, %s)" % (self.x, self.y)
class Label(Instruction):
"""
Placeholder to act as a target for JMP instructions
"""
def __hash__(self):
return id(self)
def __repr__(self):
return "L(%s)" % hex(id(self))
def concat(e1, e2):
return e1 + e2
def alt(e1, e2):
L1, L2, L3 = Label(), Label(), Label()
return [L1] + e1 + [Jmp(L3), L2] + e2 + [L3]
def zero_or_one(e):
L1, L2 = Label(), Label()
return [Split(L1, L2), L1] + e + [L2]
def zero_or_more(e):
L1, L2, L3 = Label(), Label(), Label()
return [L1, Split(L2, L3), L2] + e + [Jmp(L1), L3]
def one_or_more(e):
L1, L2 = Label(), Label()
return [L1] + e + [Split(L1, L2), L2]
def fixup(program):
refs = {}
i = 0
while i < len(program):
op = program[i]
if isinstance(op, Label):
refs[op] = i
program.pop(i)
else:
i += 1
if refs:
for op in program:
if isinstance(op, (Jmp, Split)):
op.x = refs[op.x]
if isinstance(op, Split):
op.y = refs[op.y]
return program + [Match]
class ThreadList(object):
def __init__(self, program, max=1000):
self.program = program
self.max = max
self.threads = []
def __nonzero__(self):
return bool(self.threads)
def current(self):
return self.threads.pop()
def add(self, thread):
op = self.program[thread.pc]
optype = type(op)
if optype is Jmp:
self.add(thread.at(op.x))
elif optype is Split:
self.add(thread.copy_at(op.x))
self.add(thread.at(op.y))
else:
self.threads.append(thread)
class Thread(object):
def __init__(self, pc, address, sofar='', accept=False):
self.pc = pc
self.address = address
self.sofar = sofar
self.accept = accept
def at(self, pc):
self.pc = pc
return self
def copy_at(self, pc):
return Thread(pc, self.address, self.sofar, self.accept)
def __repr__(self):
d = self.__dict__
return "Thread(%s)" % ",".join("%s=%r" % (k, v) for k, v in d.items())
def advance(thread, arc, c):
thread.pc += 1
thread.address = arc.target
thread.sofar += c
thread.accept = arc.accept
def run(graph, program, address):
threads = ThreadList(program)
threads.add(Thread(0, address))
arc = Arc()
while threads:
thread = threads.current()
address = thread.address
op = program[thread.pc]
optype = type(op)
if optype is Char:
if address:
arc = graph.find_arc(address, op.c, arc)
if arc:
advance(thread, arc)
threads.add(thread)
elif optype is Lit:
if address:
c = op.c
arc = graph.find_path(c, arc, address)
if arc:
advance(thread, arc, c)
threads.add(thread)
elif optype is Any:
if address:
sofar = thread.sofar
pc = thread.pc + 1
for arc in graph.iter_arcs(address, arc):
t = Thread(pc, arc.target, sofar + arc.label, arc.accept)
threads.add(t)
elif op is Match:
if thread.accept:
yield thread.sofar
else:
raise Exception("Don't know what to do with %r" % op)
LO = 0
HI = 1
def regex_limit(graph, mode, program, address):
low = mode == LO
output = []
threads = ThreadList(program)
threads.add(Thread(0, address))
arc = Arc()
while threads:
thread = threads.current()
address = thread.address
op = program[thread.pc]
optype = type(op)
if optype is Char:
if address:
arc = graph.find_arc(address, op.c, arc)
if arc:
if low and arc.accept:
return thread.sofar + thread.label
advance(thread, arc)
threads.add(thread)
elif optype is Lit:
if address:
labels = op.c
for label in labels:
arc = graph.find_arc(address, label)
if arc is None:
return thread.sofar
elif thread.accept:
return thread.sofar
elif optype is Any:
if address:
if low:
arc = graph.arc_at(address, arc)
else:
for arc in graph.iter_arcs(address):
pass
advance(thread, arc, arc.label)
threads.add(thread)
elif thread.accept:
return thread.sofar
elif op is Match:
return thread.sofar
else:
raise Exception("Don't know what to do with %r" % op)
# if __name__ == "__main__":
# from whoosh import index, query
# from whoosh.filedb.filestore import RamStorage
# from whoosh.automata import fst
# from whoosh.util.testing import timing
#
# st = RamStorage()
# gw = fst.GraphWriter(st.create_file("test"))
# gw.start_field("test")
# for key in ["aaaa", "aaab", "aabb", "abbb", "babb", "bbab", "bbba"]:
# gw.insert(key)
# gw.close()
# gr = fst.GraphReader(st.open_file("test"))
#
# program = one_or_more([Lit("a")])
# print program
# program = fixup(program)
# print program
# print list(run(gr, program, gr.root("test")))
#
# ix = index.open_dir("e:/dev/src/houdini/help/index")
# r = ix.reader()
# gr = r._get_graph()
#
# # program = fixup([Any(), Any(), Any(), Any(), Any()])
# # program = fixup(concat(zero_or_more([Any()]), [Char("/")]))
# # with timing():
# # x = list(run(gr, program, gr.root("path")))
# # print len(x)
#
# q = query.Regex("path", "^.[abc].*/$")
# with timing():
# y = list(q._btexts(r))
# print len(y)
# print y[0], y[-1]
#
# pr = [Any()] + alt([Lit("c")], alt([Lit("b")], [Lit("a")])) + zero_or_more([Any()]) + [Lit("/")]
# program = fixup(pr)
# # with timing():
# # x = list(run(gr, program, gr.root("path")))
# # print len(x), x
#
# with timing():
# print "lo=", regex_limit(gr, LO, program, gr.root("path"))
# print "hi=", regex_limit(gr, HI, program, gr.root("path"))
#
#
#
# #int
# #backtrackingvm(Inst *prog, char *input)
# #{
# # enum { MAXTHREAD = 1000 };
# # Thread ready[MAXTHREAD];
# # int nready;
# # Inst *pc;
# # char *sp;
# #
# # /* queue initial thread */
# # ready[0] = thread(prog, input);
# # nready = 1;
# #
# # /* run threads in stack order */
# # while(nready > 0){
# # --nready; /* pop state for next thread to run */
# # pc = ready[nready].pc;
# # sp = ready[nready].sp;
# # for(;;){
# # switch(pc->opcode){
# # case Char:
# # if(*sp != pc->c)
# # goto Dead;
# # pc++;
# # sp++;
# # continue;
# # case Match:
# # return 1;
# # case Jmp:
# # pc = pc->x;
# # continue;
# # case Split:
# # if(nready >= MAXTHREAD){
# # fprintf(stderr, "regexp overflow");
# # return -1;
# # }
# # /* queue new thread */
# # ready[nready++] = thread(pc->y, sp);
# # pc = pc->x; /* continue current thread */
# # continue;
# # }
# # }
# # Dead:;
# # }
# # return 0;
# #}
#
#