from __future__ import division from __future__ import print_function import operator import statistics from bisect import bisect_left from bisect import bisect_right from .utils import cached_property from .utils import funcname from .utils import get_cprofile_functions class Stats(object): fields = ( "min", "max", "mean", "stddev", "rounds", "median", "iqr", "q1", "q3", "iqr_outliers", "stddev_outliers", "outliers", "ld15iqr", "hd15iqr", "ops", "total" ) def __init__(self): self.data = [] def __bool__(self): return bool(self.data) def __nonzero__(self): return bool(self.data) def as_dict(self): return dict( (field, getattr(self, field)) for field in self.fields ) def update(self, duration): self.data.append(duration) @cached_property def sorted_data(self): return sorted(self.data) @cached_property def total(self): return sum(self.data) @cached_property def min(self): return min(self.data) @cached_property def max(self): return max(self.data) @cached_property def mean(self): return statistics.mean(self.data) @cached_property def stddev(self): if len(self.data) > 1: return statistics.stdev(self.data) else: return 0 @property def stddev_outliers(self): """ Count of StdDev outliers: what's beyond (Mean - StdDev, Mean - StdDev) """ count = 0 q0 = self.mean - self.stddev q4 = self.mean + self.stddev for val in self.data: if val < q0 or val > q4: count += 1 return count @cached_property def rounds(self): return len(self.data) @cached_property def median(self): return statistics.median(self.data) @cached_property def ld15iqr(self): """ Tukey-style Lowest Datum within 1.5 IQR under Q1. """ if len(self.data) == 1: return self.data[0] else: return self.sorted_data[bisect_left(self.sorted_data, self.q1 - 1.5 * self.iqr)] @cached_property def hd15iqr(self): """ Tukey-style Highest Datum within 1.5 IQR over Q3. """ if len(self.data) == 1: return self.data[0] else: pos = bisect_right(self.sorted_data, self.q3 + 1.5 * self.iqr) if pos == len(self.data): return self.sorted_data[-1] else: return self.sorted_data[pos] @cached_property def q1(self): rounds = self.rounds data = self.sorted_data # See: https://en.wikipedia.org/wiki/Quartile#Computing_methods if rounds == 1: return data[0] elif rounds % 2: # Method 3 n, q = rounds // 4, rounds % 4 if q == 1: return 0.25 * data[n - 1] + 0.75 * data[n] else: return 0.75 * data[n] + 0.25 * data[n + 1] else: # Method 2 return statistics.median(data[:rounds // 2]) @cached_property def q3(self): rounds = self.rounds data = self.sorted_data # See: https://en.wikipedia.org/wiki/Quartile#Computing_methods if rounds == 1: return data[0] elif rounds % 2: # Method 3 n, q = rounds // 4, rounds % 4 if q == 1: return 0.75 * data[3 * n] + 0.25 * data[3 * n + 1] else: return 0.25 * data[3 * n + 1] + 0.75 * data[3 * n + 2] else: # Method 2 return statistics.median(data[rounds // 2:]) @cached_property def iqr(self): return self.q3 - self.q1 @property def iqr_outliers(self): """ Count of Tukey outliers: what's beyond (Q1 - 1.5IQR, Q3 + 1.5IQR) """ count = 0 q0 = self.q1 - 1.5 * self.iqr q4 = self.q3 + 1.5 * self.iqr for val in self.data: if val < q0 or val > q4: count += 1 return count @cached_property def outliers(self): return "%s;%s" % (self.stddev_outliers, self.iqr_outliers) @cached_property def ops(self): if self.total: return self.rounds / self.total return 0 class Metadata(object): def __init__(self, fixture, iterations, options): self.name = fixture.name self.fullname = fixture.fullname self.group = fixture.group self.param = fixture.param self.params = fixture.params self.extra_info = fixture.extra_info self.cprofile_stats = fixture.cprofile_stats self.iterations = iterations self.stats = Stats() self.options = options self.fixture = fixture def __bool__(self): return bool(self.stats) def __nonzero__(self): return bool(self.stats) def get(self, key, default=None): try: return getattr(self.stats, key) except AttributeError: return getattr(self, key, default) def __getitem__(self, key): try: return getattr(self.stats, key) except AttributeError: return getattr(self, key) @property def has_error(self): return self.fixture.has_error def as_dict(self, include_data=True, flat=False, stats=True, cprofile=None): result = { "group": self.group, "name": self.name, "fullname": self.fullname, "params": self.params, "param": self.param, "extra_info": self.extra_info, "options": dict( (k, funcname(v) if callable(v) else v) for k, v in self.options.items() ) } if self.cprofile_stats: cprofile_list = result["cprofile"] = [] cprofile_functions = get_cprofile_functions(self.cprofile_stats) stats_columns = ["cumtime", "tottime", "ncalls", "ncalls_recursion", "tottime_per", "cumtime_per", "function_name"] # move column first if cprofile is not None: stats_columns.remove(cprofile) stats_columns.insert(0, cprofile) for column in stats_columns: cprofile_functions.sort(key=operator.itemgetter(column), reverse=True) for cprofile_function in cprofile_functions[:25]: if cprofile_function not in cprofile_list: cprofile_list.append(cprofile_function) # if we want only one column or we already have all available functions if cprofile is None or len(cprofile_functions) == len(cprofile_list): break if stats: stats = self.stats.as_dict() if include_data: stats["data"] = self.stats.data stats["iterations"] = self.iterations if flat: result.update(stats) else: result["stats"] = stats return result def update(self, duration): self.stats.update(duration / self.iterations) def normalize_stats(stats): if 'ops' not in stats: # fill field added in 3.1.0 stats['ops'] = 1 / stats['mean'] return stats