修改粗糙度算法(地理编码模块)
parent
477745e863
commit
ded2843ceb
|
@ -0,0 +1,261 @@
|
||||||
|
# -*- coding: UTF-8 -*-
|
||||||
|
"""
|
||||||
|
@Project:microproduct
|
||||||
|
@File:SoilMoistureALg.py
|
||||||
|
@Function:实现土壤水分计算的算法
|
||||||
|
@Contact:
|
||||||
|
@Author:SHJ
|
||||||
|
@Date:2021/8/10 10:01
|
||||||
|
@Version:1.0.0
|
||||||
|
"""
|
||||||
|
import logging
|
||||||
|
from tool.algorithm.image.ImageHandle import ImageHandler
|
||||||
|
import numpy as np
|
||||||
|
import time
|
||||||
|
import scipy
|
||||||
|
import scipy.spatial.transform._rotation_groups # 解决打包的问题
|
||||||
|
from scipy.optimize import fmin
|
||||||
|
import math
|
||||||
|
from tool.algorithm.algtools.oh2004 import oh2004
|
||||||
|
|
||||||
|
logger = logging.getLogger("mylog")
|
||||||
|
|
||||||
|
class MoistureAlg:
|
||||||
|
def __init__(self,):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def cal_vwc(vwc_path, ndwi_path, e1, e2):
|
||||||
|
"""
|
||||||
|
:param vwc_path:
|
||||||
|
:param ndwi_path:
|
||||||
|
:param e1:
|
||||||
|
:param e2:
|
||||||
|
:return: True or False
|
||||||
|
"""
|
||||||
|
image_handler = ImageHandler()
|
||||||
|
proj = image_handler.get_projection(ndwi_path)
|
||||||
|
geotrans = image_handler.get_geotransform(ndwi_path)
|
||||||
|
array = image_handler.get_band_array(ndwi_path, 1)
|
||||||
|
# 原方案的计算方式
|
||||||
|
vwc = e1 * np.square(array) + e2 * array
|
||||||
|
# 论文《基于Radarsat-2全极化数据的高原牧草覆盖地表土壤水分反演》的计算方式
|
||||||
|
#vwc = e1 * array + e2
|
||||||
|
image_handler.write_img(vwc_path, proj, geotrans, vwc)
|
||||||
|
return True
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def cal_bare_soil_bsc(bsc_path, tif_path, vwc_path, arrival_angle_path, c, d):
|
||||||
|
"""
|
||||||
|
:param bsc_path:裸土后向散射系数
|
||||||
|
:param tif_path:输入影像
|
||||||
|
:param vwc_path:vwc影像路径
|
||||||
|
:param arrival_angle_path:入射角影像文件(单位:弧度)
|
||||||
|
:param c:经验系数
|
||||||
|
:param d:经验系数
|
||||||
|
"""
|
||||||
|
image_handler = ImageHandler()
|
||||||
|
proj = image_handler.get_projection(tif_path)
|
||||||
|
geotrans = image_handler.get_geotransform(tif_path)
|
||||||
|
tif_array = image_handler.get_band_array(tif_path, 1)
|
||||||
|
vwc_array = image_handler.get_band_array(vwc_path, 1)
|
||||||
|
angle_array = image_handler.get_band_array(arrival_angle_path, 1)
|
||||||
|
|
||||||
|
try:
|
||||||
|
cos_angle = np.cos(angle_array)
|
||||||
|
tmp1 = tif_array - c * vwc_array * cos_angle
|
||||||
|
tmp2 = np.exp(-2 * d * vwc_array * (1/cos_angle))
|
||||||
|
bsc_array = 1 + tmp1/tmp2
|
||||||
|
|
||||||
|
except BaseException as msg:
|
||||||
|
logger.error(msg)
|
||||||
|
return False
|
||||||
|
bsc_array = np.where(bsc_array > 0, bsc_array, 0)
|
||||||
|
|
||||||
|
image_handler.write_img(bsc_path, proj, geotrans, bsc_array)
|
||||||
|
return True
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def cal_soil_moisture(soil_moisture_path, hh_bsc_path, vv_bsc_path, arrival_angle_path, mask_path, λ, f=5.3, T=24.5,bd=1, vsand=0.54, vclay=0.19,block_num=0):
|
||||||
|
"""
|
||||||
|
:param soil_moisture_path:土壤水分产品路径
|
||||||
|
:param hh_bsc_path:hh裸土后向散射系数
|
||||||
|
:param vv_bsc_path:vv裸土后向散射系数
|
||||||
|
:param arrival_angle_path:入射角影像文件
|
||||||
|
:param mask_path:掩膜影像文件
|
||||||
|
:param λ:经验系数
|
||||||
|
:param f:微波频率,单位GHz
|
||||||
|
:param T:温度,摄氏度
|
||||||
|
:param bd:土壤容重
|
||||||
|
:param vsand:沙土含量,范围0-1
|
||||||
|
:param vclay:黏土含量,范围0-1
|
||||||
|
:return: True or False
|
||||||
|
"""
|
||||||
|
image_handler = ImageHandler()
|
||||||
|
proj = image_handler.get_projection(hh_bsc_path)
|
||||||
|
geotrans = image_handler.get_geotransform(hh_bsc_path)
|
||||||
|
|
||||||
|
angle_array = image_handler.get_band_array(arrival_angle_path, 1)
|
||||||
|
|
||||||
|
try:
|
||||||
|
# 计算土壤介电常数
|
||||||
|
hh_bsc_array = image_handler.get_band_array(hh_bsc_path, 1)
|
||||||
|
if np.any(hh_bsc_array < 0):
|
||||||
|
logger.error("hh_bsc_array include negative value!")
|
||||||
|
return False
|
||||||
|
tmp = np.power(10, 0.19) * np.power(float(λ), 0.15) * hh_bsc_array
|
||||||
|
# 处理异常值
|
||||||
|
where_tmp1_0 = np.where(tmp == 0.0)
|
||||||
|
tmp[where_tmp1_0] = 1
|
||||||
|
except BaseException as msg:
|
||||||
|
logger.error(msg)
|
||||||
|
return False
|
||||||
|
|
||||||
|
try:
|
||||||
|
vv_bsc_array = image_handler.get_band_array(vv_bsc_path, 1)
|
||||||
|
if np.any(vv_bsc_array < 0):
|
||||||
|
logger.error("vv_bsc_array include negative value!")
|
||||||
|
return False
|
||||||
|
tmp2 = np.power(np.cos(angle_array), 1.82) * np.power(np.sin(angle_array), 0.93) *\
|
||||||
|
np.power(vv_bsc_array, 0.786)
|
||||||
|
# 处理异常值
|
||||||
|
where_tmp2_0 = np.where(tmp2 == 0.0)
|
||||||
|
tmp2[where_tmp2_0] = 1
|
||||||
|
tmp = tmp/tmp2
|
||||||
|
|
||||||
|
# 土壤介电常数
|
||||||
|
soil_dielectric = (1/(0.024 * np.tan(angle_array))) * np.log10(tmp)
|
||||||
|
soil_dielectric_path = soil_moisture_path.replace("soil_moisture","soil_dielectric")
|
||||||
|
image_handler.write_img(soil_dielectric_path, proj, geotrans, soil_dielectric)
|
||||||
|
except BaseException as msg:
|
||||||
|
logger.error(msg)
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
mask_array = ImageHandler.get_band_array(mask_path, 1)
|
||||||
|
soil_dielectric[np.where(mask_array == 0)] = np.nan
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Dobsen模型计算土壤水分
|
||||||
|
soil_moisture = dobsen_inverse(f, T, bd, vsand, vclay, soil_dielectric, block_num)
|
||||||
|
|
||||||
|
# topp模型计算土壤水分
|
||||||
|
# soil_moisture = -5.3 * np.power(10.0, -2) + 2.92 * np.power(10.0, -2) * soil_dielectric - \
|
||||||
|
# 5.5 * np.power(10.0, -4) * np.power(soil_dielectric, 2) + \
|
||||||
|
# 4.3 * np.power(10.0, -6) * np.power(soil_dielectric, 3)
|
||||||
|
# 处理异常值
|
||||||
|
soil_moisture[where_tmp1_0] = 0
|
||||||
|
soil_moisture[where_tmp2_0] = 0
|
||||||
|
except BaseException as msg:
|
||||||
|
logger.error(msg)
|
||||||
|
return False
|
||||||
|
image_handler.write_img(soil_moisture_path, proj, geotrans, soil_moisture)
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def cal_soilM(soil_moisture_path, hh_bsc_path, vv_bsc_path, hv_bsc_path, vh_bsc_path, angle_path,mask_path, wl):
|
||||||
|
"""
|
||||||
|
|
||||||
|
:param soil_moisture_path: 土壤水分路径
|
||||||
|
:param hh_bsc_path: hh极化路径
|
||||||
|
:param vv_bsc_path: vv极化路径
|
||||||
|
:param hv_bsc_path: hv极化路径
|
||||||
|
:param vh_bsc_path: vh极化路径
|
||||||
|
:param angle_path: 入射角
|
||||||
|
:param wl: 波长
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
|
||||||
|
image_handler = ImageHandler()
|
||||||
|
proj = image_handler.get_projection(hh_bsc_path)
|
||||||
|
geotrans = image_handler.get_geotransform(hh_bsc_path)
|
||||||
|
|
||||||
|
hh_arr = ImageHandler.get_band_array(hh_bsc_path, 1)
|
||||||
|
hv_arr = ImageHandler.get_band_array(hv_bsc_path, 1)
|
||||||
|
vh_arr = ImageHandler.get_band_array(vh_bsc_path, 1)
|
||||||
|
vv_arr = ImageHandler.get_band_array(vv_bsc_path, 1)
|
||||||
|
angle_arr = ImageHandler.get_band_array(angle_path, 1)
|
||||||
|
mask_arr = ImageHandler.get_band_array(mask_path, 1)
|
||||||
|
f = oh2004.lamda2freq(wl/100)/1e9 # wl 原来是cm ,得转成m
|
||||||
|
n = np.array(hh_arr).shape[0] * np.array(hh_arr).shape[1]
|
||||||
|
|
||||||
|
hh = np.array(hh_arr).flatten().astype(np.double)
|
||||||
|
hh[np.where(hh == -9999)] = np.nan
|
||||||
|
hv = np.array(hv_arr).flatten().astype(np.double)
|
||||||
|
hv[np.where(hv == -9999)] = np.nan
|
||||||
|
vv = np.array(vv_arr).flatten().astype(np.double)
|
||||||
|
vv[np.where(vv == -9999)] = np.nan
|
||||||
|
angle = np.array(angle_arr).flatten().astype(np.double)
|
||||||
|
angle[np.where(angle == -9999)] = np.nan
|
||||||
|
mask = np.array(mask_arr).flatten().astype(np.int32)
|
||||||
|
|
||||||
|
# foo_retrieve = inverse_radar(hh_arr, hv_arr, vh_arr, vv_arr, angle_arr, wl)
|
||||||
|
# mv, h = foo_retrieve.retrieve_oh2004_Cython()
|
||||||
|
mv = np.zeros(np.array(hh_arr).shape, dtype=np.double).flatten()
|
||||||
|
h = np.zeros(np.array(hh_arr).shape, dtype=np.double).flatten()
|
||||||
|
angle=angle*180/3.1415926
|
||||||
|
|
||||||
|
oh2004.retrieve_oh2004_main(n, mv, h, mask, vv, hh, hv, hv, angle, f)
|
||||||
|
|
||||||
|
soil = np.array(mv).reshape(np.array(hh_arr).shape)
|
||||||
|
|
||||||
|
image_handler.write_img(soil_moisture_path, proj, geotrans, soil)
|
||||||
|
return True
|
||||||
|
|
||||||
|
def dobsen_inverse(f, T, bd, vsand, vclay, soil_dielectric_array,block_num, x0=0):
|
||||||
|
"""
|
||||||
|
Dobsen模型,土壤水分反演
|
||||||
|
:param f:微波频率,单位GHz
|
||||||
|
:param T:温度,摄氏度
|
||||||
|
:param bd:土壤容重
|
||||||
|
:param vsand:沙土含量,范围0-1
|
||||||
|
:param vclay:黏土含量,范围0-1
|
||||||
|
:param soil_dielectric_array:土壤介电常数
|
||||||
|
:param x0 :土壤水分寻优,初始值
|
||||||
|
:return: True or False
|
||||||
|
"""
|
||||||
|
alpha = 0.65
|
||||||
|
sd = 2.65
|
||||||
|
dcs = (1.01 + 0.44 * sd) ** 2 - 0.062
|
||||||
|
dc0 = 0.008854
|
||||||
|
dcw0 = 88.045 - 0.4147 * T + 6.295e-4 * (T ** 2) + 1.075e-5 * (T ** 3)
|
||||||
|
tpt = 0.11109 - 3.824e-3 * T + 6.938e-5 * (T ** 2) - 5.096e-7 * (T ** 3)
|
||||||
|
dcwinf = 4.9
|
||||||
|
if f >= 1.4:
|
||||||
|
sigma = -1.645 + 1.939 * bd - 2.013e-2 * vsand + 1.594e-2 * vclay
|
||||||
|
else:
|
||||||
|
sigma = 0.0467 + 0.2204 * bd - 4.111e-3 * vsand + 6.614e-3 * vclay
|
||||||
|
|
||||||
|
dcwr = dcwinf + ((dcw0 - dcwinf) / (1 + (tpt * f) ** 2))
|
||||||
|
|
||||||
|
betar = 1.2748 - 0.00519 * vsand - 0.00152 * vclay
|
||||||
|
betai = 1.33797 - 0.00603 * vsand - 0.00166 * vclay
|
||||||
|
|
||||||
|
# fun = lambda vwc: np.abs(np.sqrt(
|
||||||
|
# ((1.0 + (bd / sd) * ((dcs ** alpha) - 1.0) + (vwc ** betar) * (dcwr ** alpha) - vwc) ** (1 / alpha)) ** 2 +
|
||||||
|
# ((vwc ** (betai / alpha)) * ((tpt * f * (dcw0 - dcwinf)) / (1 + (tpt * f) ** 2) + sigma * (1.0 - (bd / sd)) / (2 * np.pi * dc0 * f * vwc))) ** 2
|
||||||
|
# ) - soil_dielectric)
|
||||||
|
fun = lambda vwc: np.abs(np.sqrt(
|
||||||
|
((1.0 + (bd / sd) * ((dcs ** alpha) - 1.0) + (vwc ** betar) * (dcwr ** alpha) - vwc) ** (1 / alpha)) ** 2 +
|
||||||
|
((vwc ** (betai / alpha)) * ((tpt * f * (dcw0 - dcwinf)) / (1 + (tpt * f) ** 2) + sigma * (1.0 - (bd / sd)) / (8 * math.atan(1.0) * dc0 * f * vwc))) ** 2
|
||||||
|
) - soil_dielectric)
|
||||||
|
|
||||||
|
soil_dielectric_array[np.isnan(soil_dielectric_array)] = 0
|
||||||
|
w = np.where((soil_dielectric_array == 0) == False)
|
||||||
|
num = len(w[0])
|
||||||
|
soil_mois = np.zeros(num)
|
||||||
|
bar_list = [0, int(0.1*num), int(0.2*num), int(0.3*num), int(0.4*num), int(0.5*num), int(0.6*num), int(0.7*num), int(0.8*num), int(0.9*num), num-1]
|
||||||
|
|
||||||
|
start = time.perf_counter()
|
||||||
|
for soil_dielectric, n in zip(soil_dielectric_array[w], range(num)):
|
||||||
|
soil_mois[n] = fmin(fun, x0, disp=0)
|
||||||
|
if n in bar_list:
|
||||||
|
logger.info('block:{},cal soil_moisture proggress bar:{}%,use time :{}s'.format(block_num, round(n/num * 100), int(time.perf_counter()-start)))
|
||||||
|
soil_dielectric_array[w] = soil_mois # 土壤水分
|
||||||
|
return soil_dielectric_array
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -19,16 +19,16 @@ from tool.algorithm.transforml1a.transHandle import TransImgL1A
|
||||||
from tool.algorithm.xml.AlgXmlHandle import ManageAlgXML, CheckSource,InitPara # 导入xml文件读取与检查文件
|
from tool.algorithm.xml.AlgXmlHandle import ManageAlgXML, CheckSource,InitPara # 导入xml文件读取与检查文件
|
||||||
from tool.algorithm.image.ImageHandle import ImageHandler
|
from tool.algorithm.image.ImageHandle import ImageHandler
|
||||||
from tool.algorithm.algtools.logHandler import LogHandler
|
from tool.algorithm.algtools.logHandler import LogHandler
|
||||||
from SoilMoistureALg import MoistureAlg as alg
|
from SurfaceRoughnessAlg import MoistureAlg as alg
|
||||||
from tool.algorithm.block.blockprocess import BlockProcess
|
from tool.algorithm.block.blockprocess import BlockProcess
|
||||||
from tool.algorithm.algtools.MetaDataHandler import MetaDataHandler
|
from tool.algorithm.algtools.MetaDataHandler import MetaDataHandler
|
||||||
from tool.config.ConfigeHandle import Config as cf
|
from tool.config.ConfigeHandle import Config as cf
|
||||||
from tool.algorithm.xml.CreatMetafile import CreateMetafile
|
from tool.algorithm.xml.CreatMetafile import CreateMetafile
|
||||||
from tool.algorithm.algtools.ROIAlg import ROIAlg as roi
|
from tool.algorithm.algtools.ROIAlg import ROIAlg as roi
|
||||||
from SoilMoistureXmlInfo import CreateDict, CreateStadardXmlFile
|
from SurfaceRoughnessXmlInfo import CreateDict, CreateStadardXmlFile
|
||||||
from tool.algorithm.algtools.filter.lee_Filter import Filter
|
from tool.algorithm.algtools.filter.lee_Filter import Filter
|
||||||
from tool.file.fileHandle import fileHandle
|
from tool.file.fileHandle import fileHandle
|
||||||
from SoilMoistureTool import SoilMoistureTool
|
from SurfaceRoughnessTool import SoilMoistureTool
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
import shutil
|
import shutil
|
||||||
|
@ -114,6 +114,8 @@ class MoistureMain:
|
||||||
# para_dic.update(InitPara.get_meta_dic(InitPara.get_meta_paths(file_dir, name), name))
|
# para_dic.update(InitPara.get_meta_dic(InitPara.get_meta_paths(file_dir, name), name))
|
||||||
para_dic.update(InitPara.get_meta_dic_new(InitPara.get_meta_paths(file_dir, name), name))
|
para_dic.update(InitPara.get_meta_dic_new(InitPara.get_meta_paths(file_dir, name), name))
|
||||||
# tif路径字典
|
# tif路径字典
|
||||||
|
parameter_path = os.path.join(file_dir, "orth_para.txt")
|
||||||
|
para_dic.update({"paraMeter": parameter_path})
|
||||||
pol_dic = InitPara.get_polarization_mode(InitPara.get_tif_paths(file_dir, name))
|
pol_dic = InitPara.get_polarization_mode(InitPara.get_tif_paths(file_dir, name))
|
||||||
|
|
||||||
flag_list = [0, 0, 0, 0]
|
flag_list = [0, 0, 0, 0]
|
||||||
|
@ -136,6 +138,8 @@ class MoistureMain:
|
||||||
para_dic.update({'inc_angle': in_tif_path})
|
para_dic.update({'inc_angle': in_tif_path})
|
||||||
elif 'ori_sim' == key:
|
elif 'ori_sim' == key:
|
||||||
para_dic.update({'ori_sim': in_tif_path})
|
para_dic.update({'ori_sim': in_tif_path})
|
||||||
|
elif 'sim_ori' == key:
|
||||||
|
para_dic.update({'sim_ori': in_tif_path})
|
||||||
elif 'LocalIncidenceAngle' == key:
|
elif 'LocalIncidenceAngle' == key:
|
||||||
para_dic.update({'LocalIncidenceAngle': in_tif_path})
|
para_dic.update({'LocalIncidenceAngle': in_tif_path})
|
||||||
elif 'inci_Angle-ortho' == key:
|
elif 'inci_Angle-ortho' == key:
|
||||||
|
@ -173,13 +177,13 @@ class MoistureMain:
|
||||||
# self.__preprocessed_paras, scopes_roi = p.preprocessing_oh2004(para_names, self.__processing_paras,
|
# self.__preprocessed_paras, scopes_roi = p.preprocessing_oh2004(para_names, self.__processing_paras,
|
||||||
# self.__workspace_preprocessing_path, self.__workspace_preprocessed_path)
|
# self.__workspace_preprocessing_path, self.__workspace_preprocessed_path)
|
||||||
|
|
||||||
para_names_geo = ['Covering', 'NDVI']
|
para_names_geo = ['Covering', 'NDVI', 'inc_angle', 'sim_ori']
|
||||||
p = pp()
|
p = pp()
|
||||||
cutted_img_paths, scopes_roi = p.cut_geoimg(self.__workspace_preprocessing_path, para_names_geo,
|
cutted_img_paths, scopes_roi = p.cut_geoimg(self.__workspace_preprocessing_path, para_names_geo,
|
||||||
self.__processing_paras)
|
self.__processing_paras)
|
||||||
|
|
||||||
self.__preprocessed_paras.update(cutted_img_paths)
|
self.__preprocessed_paras.update(cutted_img_paths)
|
||||||
para_names_l1a = ["HH", "VV", "HV", "VH", 'inci_Angle-ortho', 'ori_sim']
|
para_names_l1a = ["HH", "VV", "HV", "VH", 'ori_sim']
|
||||||
self._tr = TransImgL1A(self.__processing_paras['ori_sim'], scopes_roi)
|
self._tr = TransImgL1A(self.__processing_paras['ori_sim'], scopes_roi)
|
||||||
|
|
||||||
for name in para_names_l1a:
|
for name in para_names_l1a:
|
||||||
|
@ -254,15 +258,14 @@ class MoistureMain:
|
||||||
pp.resampling_by_scale(self.__preprocessed_paras["Covering"], cover_rampling_path, refer_img_path)
|
pp.resampling_by_scale(self.__preprocessed_paras["Covering"], cover_rampling_path, refer_img_path)
|
||||||
self.__preprocessed_paras["Covering"] = cover_rampling_path
|
self.__preprocessed_paras["Covering"] = cover_rampling_path
|
||||||
|
|
||||||
def inter_Range2Geo(self, lon_lat_path, data_tiff, grid_path, space):
|
def calInterpolation_bil_Wgs84_rc_sar_sigma(self, parameter_path, dem_rc, in_sar, out_sar):
|
||||||
'''
|
'''
|
||||||
# std::cout << "mode 10";
|
# std::cout << "mode 11";
|
||||||
# std::cout << "SIMOrthoProgram.exe 10 lon_lat_path data_tiff grid_path space";
|
# std::cout << "SIMOrthoProgram.exe 11 in_parameter_path in_rc_wgs84_path in_ori_sar_path out_orth_sar_path";
|
||||||
'''
|
'''
|
||||||
exe_path = r".\baseTool\x64\Release\SIMOrthoProgram.exe"
|
exe_path = r".\baseTool\x64\Release\SIMOrthoProgram.exe"
|
||||||
exe_cmd = r"set PROJ_LIB=.\baseTool\x64\Release; & {0} {1} {2} {3} {4} {5}".format(exe_path, 10,
|
exe_cmd = r"set PROJ_LIB=.\baseTool\x64\Release; & {0} {1} {2} {3} {4} {5}".format(exe_path, 11, parameter_path,
|
||||||
lon_lat_path, data_tiff,
|
dem_rc, in_sar, out_sar)
|
||||||
grid_path, space)
|
|
||||||
print(exe_cmd)
|
print(exe_cmd)
|
||||||
print(os.system(exe_cmd))
|
print(os.system(exe_cmd))
|
||||||
print("==========================================================================")
|
print("==========================================================================")
|
||||||
|
@ -275,7 +278,7 @@ class MoistureMain:
|
||||||
tem_folder = self.__workspace_path + EXE_NAME + r"\Temporary""\\"
|
tem_folder = self.__workspace_path + EXE_NAME + r"\Temporary""\\"
|
||||||
|
|
||||||
soilOh2004 = SoilMoistureTool(self.__workspace_preprocessed_path, self.__workspace_processing_path, self.__cols,
|
soilOh2004 = SoilMoistureTool(self.__workspace_preprocessed_path, self.__workspace_processing_path, self.__cols,
|
||||||
self.__rows, self.__preprocessed_paras['inci_Angle-ortho'], self.__processing_paras['Origin_META'])
|
self.__rows, self.__preprocessed_paras['inc_angle'], self.__processing_paras['Origin_META'])
|
||||||
result = soilOh2004.soil_oh2004()
|
result = soilOh2004.soil_oh2004()
|
||||||
|
|
||||||
logger.info('progress bar: 80%')
|
logger.info('progress bar: 80%')
|
||||||
|
@ -287,7 +290,10 @@ class MoistureMain:
|
||||||
shutil.copy(tif_file, product_temp_path)
|
shutil.copy(tif_file, product_temp_path)
|
||||||
product_geo_path = os.path.join(tem_folder, 'SurfaceRoughnessProduct_geo.tif')
|
product_geo_path = os.path.join(tem_folder, 'SurfaceRoughnessProduct_geo.tif')
|
||||||
|
|
||||||
self.inter_Range2Geo(self.__preprocessed_paras['ori_sim'], product_temp_path, product_geo_path, pixelspace)
|
self.calInterpolation_bil_Wgs84_rc_sar_sigma(self.__processing_paras['paraMeter'],
|
||||||
|
self.__preprocessed_paras['sim_ori'], product_temp_path,
|
||||||
|
product_geo_path)
|
||||||
|
# self.inter_Range2Geo(self.__preprocessed_paras['ori_sim'], product_temp_path, product_geo_path, pixelspace)
|
||||||
# self._tr.l1a_2_geo_int(self.__preprocessed_paras['ori_sim'], product_temp_path, product_geo_path, 'linear')
|
# self._tr.l1a_2_geo_int(self.__preprocessed_paras['ori_sim'], product_temp_path, product_geo_path, 'linear')
|
||||||
#
|
#
|
||||||
# hh_geo_path = self.__workspace_processing_path + "hh_geo.tif"
|
# hh_geo_path = self.__workspace_processing_path + "hh_geo.tif"
|
||||||
|
@ -298,10 +304,11 @@ class MoistureMain:
|
||||||
bare_land_mask_path = roi().roi_process(para_names, self.__workspace_processing_path + "/roi/",
|
bare_land_mask_path = roi().roi_process(para_names, self.__workspace_processing_path + "/roi/",
|
||||||
self.__processing_paras, self.__preprocessed_paras)
|
self.__processing_paras, self.__preprocessed_paras)
|
||||||
|
|
||||||
product_path = os.path.join(self.__product_dic, 'SurfaceRoughnessProduct.tif')
|
SrcImageName = os.path.split(self.__input_paras["DualPolarSAR"]['ParaValue'])[1].split('.tar.gz')[0] + '-Roughness.tif'
|
||||||
|
product_path = os.path.join(self.__product_dic, SrcImageName)
|
||||||
# 获取影像roi区域
|
# 获取影像roi区域
|
||||||
|
|
||||||
roi.cal_roi(product_path, product_geo_path, bare_land_mask_path, background_value=np.nan)
|
roi.cal_roi(product_path, product_geo_path, bare_land_mask_path, background_value=0)
|
||||||
|
|
||||||
# 生成快视图
|
# 生成快视图
|
||||||
self.imageHandler.write_quick_view(product_path)
|
self.imageHandler.write_quick_view(product_path)
|
|
@ -3,7 +3,7 @@
|
||||||
block_cipher = None
|
block_cipher = None
|
||||||
|
|
||||||
|
|
||||||
a = Analysis(['SoilMoistureMain.py'],
|
a = Analysis(['SurfaceRoughnessMain.py'],
|
||||||
pathex=['D:\\estar-proj\\microproduct\\surfaceRoughness_oh2004'],
|
pathex=['D:\\estar-proj\\microproduct\\surfaceRoughness_oh2004'],
|
||||||
binaries=[],
|
binaries=[],
|
||||||
datas=[('D:/Anaconda/envs/micro/Lib/site-packages/dask/dask.yaml', './dask'), ('D:/Anaconda/envs/micro/Lib/site-packages/distributed/distributed.yaml', './distributed')],
|
datas=[('D:/Anaconda/envs/micro/Lib/site-packages/dask/dask.yaml', './dask'), ('D:/Anaconda/envs/micro/Lib/site-packages/distributed/distributed.yaml', './distributed')],
|
||||||
|
@ -23,7 +23,7 @@ exe = EXE(pyz,
|
||||||
a.zipfiles,
|
a.zipfiles,
|
||||||
a.datas,
|
a.datas,
|
||||||
[],
|
[],
|
||||||
name='SoilMoistureMain',
|
name='SurfaceRoughnessMain',
|
||||||
debug=False,
|
debug=False,
|
||||||
bootloader_ignore_signals=False,
|
bootloader_ignore_signals=False,
|
||||||
strip=False,
|
strip=False,
|
|
@ -53,7 +53,7 @@ class SoilMoistureTool:
|
||||||
leeFilter.api_lee_refined_filter_T3('', t3_path, lee_filter_path, 0, 0, atp.rows(), atp.cols())
|
leeFilter.api_lee_refined_filter_T3('', t3_path, lee_filter_path, 0, 0, atp.rows(), atp.cols())
|
||||||
logger.info("refine_lee filter success!")
|
logger.info("refine_lee filter success!")
|
||||||
# logging.info("refine_lee filter success!")
|
# logging.info("refine_lee filter success!")
|
||||||
return t3_path
|
return lee_filter_path
|
||||||
|
|
||||||
|
|
||||||
# def create_incidence(self, incidence_xml):
|
# def create_incidence(self, incidence_xml):
|
Loading…
Reference in New Issue