更新产品xml格式

dev
tian jiax 2024-01-03 13:46:38 +08:00
parent 82de4b4dc2
commit db14c51ee7
9 changed files with 583 additions and 2 deletions

60
leafAreaIndex/product.xml Normal file
View File

@ -0,0 +1,60 @@
<Root>
<ProductBasicInfo>
<ProductName>后向散射系数</ProductName>
<ProductIdentifier>BackScattering</ProductIdentifier>
<ProductLevel>5</ProductLevel>
<ProductResolution> </ProductResolution>
<ProductDate> </ProductDate>
<ProductFormat> </ProductFormat>
<CompressionMethod> </CompressionMethod>
<ProductSize> </ProductSize>
<SpatialCoverageInformation>
<TopLeftLatitude> </TopLeftLatitude>
<TopLeftLongitude> </TopLeftLongitude>
<TopRightLatitude> </TopRightLatitude>
<TopRightLongitude> </TopRightLongitude>
<BottomRightLatitude> </BottomRightLatitude>
<BottomRightLongitude> </BottomRightLongitude>
<BottomLeftLatitude> </BottomLeftLatitude>
<BottomLeftLongitude> </BottomLeftLongitude>
<CenterLatitude> </CenterLatitude>
<CenterLongitude> </CenterLongitude>
</SpatialCoverageInformation>
<TimeCoverageInformation>
<StartTime> </StartTime>
<EndTime> </EndTime>
<CenterTime> </CenterTime>
</TimeCoverageInformation>
<CoordinateReferenceSystemInformation>
<MapProjection> </MapProjection>
<EarthEllipsoid> </EarthEllipsoid>
<ZoneNo> </ZoneNo>
</CoordinateReferenceSystemInformation>
<MetaInfo>
<Unit> </Unit>
<UnitDes> </UnitDes>
</MetaInfo>
</ProductBasicInfo>
<ProductProductionInfo>
<DataSources number="1">
<DataSource>
<Satellite> </Satellite>
<Sensor> </Sensor>
</DataSource>
</DataSources>
<ObservationGeometry>
<SatelliteAzimuth> </SatelliteAzimuth>
<SatelliteRange> </SatelliteRange>
</ObservationGeometry>
<BandSelection>1</BandSelection>
<DataSourceDescription>None</DataSourceDescription>
<DataSourceProcessingDescription>参考产品介绍PDF</DataSourceProcessingDescription>
<ProductionDate> </ProductionDate>
<AuxiliaryDataDescription> </AuxiliaryDataDescription>
</ProductProductionInfo>
<ProductPublishInfo>
<Processor>德清</Processor>
<DistributionUnit> </DistributionUnit>
<ContactInformation> </ContactInformation>
</ProductPublishInfo>
</Root>

View File

@ -0,0 +1,202 @@
#
# 样本处理的相关的库
#
from tool.algorithm.image.ImageHandle import ImageHandler
import math
import numpy as np
import random
import scipy
# 最小二乘求解非线性方程组
from scipy.optimize import leastsq,fsolve,root
from osgeo import gdal,gdalconst
import pandas as pds
from scipy import interpolate
from multiprocessing import pool
# 常量声明区域
imageHandler=ImageHandler()
# python 的函数类
def read_sample_csv(csv_path):
""" 读取样本的csv
Args:
csv_path (string): 样本csv的地址绝对路径
return:
[
['日期','样方编号','经度','纬度','叶面积指数',"后向散射系数"],
['日期','样方编号','经度','纬度','叶面积指数',"后向散射系数"],......
]
"""
lai_csv=pds.read_csv(csv_path)# 代码测试区域
lai_csv=lai_csv.loc[:,['id','lon','lat','leaf',"cal"]]
result=[]
for i in range(len(lai_csv)):
result.append([
0,
lai_csv.loc[i,'id'],
lai_csv.loc[i,'lon'], # lon,x
lai_csv.loc[i,'lat'], # lat,y
lai_csv.loc[i,'leaf'],
10**(float(lai_csv.loc[i,'cal'])/10),
])
return result
def read_tiff(tiff_path):
""" 从文件中读取影像
Args:
tiff_path (string): 文件影像路径
"""
im_proj, im_geotrans, im_arr=imageHandler.read_img(tiff_path)
return {
'proj':im_proj,
'geotrans':im_geotrans,
'data':im_arr
}
def ReprojectImages2(in_tiff_path,ref_tiff_path,out_tiff_path,resampleAlg=gdalconst.GRA_Bilinear):
""" 将输入影像重采样到参考影像的范围内
Args:
in_tiff_path (string): 输入影像
ref_tiff_path (string): 参考影像
out_tiff_path (string): 输出地址
resampleAlg (gadlconst): 插值方法
"""
# 若采用gdal.Warp()方法进行重采样
# 获取输出影像信息
inputrasfile = gdal.Open(in_tiff_path, gdal.GA_ReadOnly)
inputProj = inputrasfile.GetProjection()
# 获取参考影像信息
referencefile = gdal.Open(ref_tiff_path, gdal.GA_ReadOnly)
referencefileProj = referencefile.GetProjection()
referencefileTrans = referencefile.GetGeoTransform()
bandreferencefile = referencefile.GetRasterBand(1)
x = referencefile.RasterXSize
y = referencefile.RasterYSize
nbands = referencefile.RasterCount
# 创建重采样输出文件(设置投影及六参数)
driver = gdal.GetDriverByName('GTiff')
output = driver.Create(out_tiff_path, x, y, nbands, bandreferencefile.DataType)
output.SetGeoTransform(referencefileTrans)
output.SetProjection(referencefileProj)
options = gdal.WarpOptions(srcSRS=inputProj, dstSRS=referencefileProj, resampleAlg=gdalconst.GRA_Bilinear)
gdal.Warp(output, in_tiff_path, options=options)
def combine_sample_attr(sample_list,attr_tiff):
""" 构建样本
Args:
sample_list (list): 原样本
attr_tiff (string): 添加的属性数据
Returns:
list:[sample,new_attr]
"""
result=[]
# 因为soil_tiff 的影像的 影像分辨率较低
inv_gt=gdal.InvGeoTransform(attr_tiff['geotrans'])
for sample_item in sample_list:
sample_lon=sample_item[2]
sample_lat=sample_item[3]
sample_in_tiff_x=inv_gt[0]+inv_gt[1]*sample_lon+inv_gt[2]*sample_lat # x
sample_in_tiff_y=inv_gt[3]+inv_gt[4]*sample_lon+inv_gt[5]*sample_lat # y
x_min=int(np.floor(sample_in_tiff_x))
x_max=int(np.ceil(sample_in_tiff_x))
y_min=int(np.floor(sample_in_tiff_y))
y_max=int(np.ceil(sample_in_tiff_y))
if x_min<0 or y_min<0 or x_max>=attr_tiff['data'].shape[1] or y_max>=attr_tiff['data'].shape[0]:
continue
#
"""
f = interpolate.interp2d([0,0,1,1], [0,1,1,0],
[attr_tiff['data'][y_min,x_min],
attr_tiff['data'][y_max,x_min],
attr_tiff['data'][y_max,x_max],
attr_tiff['data'][y_min,x_min]
], kind='linear')
interp_value=f(sample_in_tiff_x-x_min,sample_in_tiff_y-y_min)
sample_item.append(interp_value[0])
"""
# 9x9
x_min=x_min-4 if x_min-9>=0 else 0
y_min=y_min-4 if y_min-9>=0 else 0
x_max=x_max+4 if x_max+4<attr_tiff['data'].shape[1] else attr_tiff['data'].shape[1]
y_max=y_max+4 if y_max+4<attr_tiff['data'].shape[0] else attr_tiff['data'].shape[0]
interp_value=np.mean(attr_tiff['data'][y_min:y_max,x_min:x_max])
sample_item.append(interp_value)
result.append(sample_item)
return result
def check_sample(sample_list):
""" 检查样本值
Args:
sample_list (list): 样本值[ ['日期', '样方编号', '经度', '纬度', 'LAI','土壤含水量','入射角','后向散射系数'] ]
Returns:
list : 处理之后的样本值
"""
result=[]
for item in sample_list:
if len(item)==10:
sample_time,sample_code,sample_lon,sample_lat,sample_lai,csv_sigma,sample_soil,sample_inc,sample_sigma,sample_NDVI=item
else:
sample_time,sample_code,sample_lon,sample_lat,sample_lai,csv_sigma,sample_soil,sample_inc,sample_sigma=item
if sample_sigma<=0:
continue
if (sample_inc*180/np.pi)>90:
continue
if sample_soil<=0 or sample_soil>=1:
continue
if sample_lai<=0 or sample_lai>=20:
continue
result.append(item)
# 绘制分布图
# lai=[]
# sigma=[]
# csv_sigmas=[]
# text_label=[]
# for item in result:
# if len(item)==10:
# sample_time,sample_code,sample_lon,sample_lat,sample_lai,csv_sigma,sample_soil,sample_inc,sample_sigma,sample_NDVI=item
# else:
# sample_time,sample_code,sample_lon,sample_lat,sample_lai,csv_sigma,sample_soil,sample_inc,sample_sigma=item
# text_label.append(sample_code)
# lai.append(sample_lai)
# sigma.append(sample_sigma)
# csv_sigmas.append(csv_sigma)
# from matplotlib import pyplot as plt
# plt.scatter(np.array(lai),np.array(sigma),label="lai-tiff_sigma")
# for i in range(len(sigma)):
# plt.annotate(text_label[i], xy = (lai[i], sigma[i])) # 这里xy是需要标记的坐标xytext是对应的标签坐标
#
# plt.scatter(np.array(lai),np.array(csv_sigmas),label="lai-csv_sigmas")
# for i in range(len(csv_sigmas)):
# plt.annotate(text_label[i], xy = (lai[i],csv_sigmas[i])) # 这里xy是需要标记的坐标xytext是对应的标签坐标
# plt.legend()
# plt.show()
return result
def split_sample_list(sample_list,train_ratio):
""" 切分样本比值
Args:
sample_list (list): 样本列表
train_ratio (double): 训练样本的比重
Returns:
list: [sample_train,sample_test]
"""
sample_train=[]
sample_test=[]
n=len(sample_list)
for i in range(n):
if random.random()<=train_ratio:
sample_train.append(sample_list[i])
else:
sample_test.append(sample_list[i])
return [sample_train,sample_test]

View File

@ -249,7 +249,7 @@ class MoistureMain:
bp = BlockProcess()
# block_size = bp.get_block_size(self.__rows, self.__cols,block_size_config)
block_size = bp.get_block_size(self.__rows, self.__cols)
bp.cut(self.__workspace_preprocessed_path, self.__workspace_block_tif_path, ['tif', 'tiff'], 'tif', block_size)
bp.cut_new(self.__workspace_preprocessed_path, self.__workspace_block_tif_path, ['tif', 'tiff'], 'tif', block_size)
logger.info('blocking tifs success!')
img_dir, img_name = bp.get_file_names(self.__workspace_block_tif_path, ['tif'])
@ -339,7 +339,7 @@ class MoistureMain:
h = ImageHandler.get_img_height(self.__preprocessed_paras['HH'])
out_path = self.__workspace_processing_path[0:-1]
tif_type = bp.get_tif_dtype(self.__preprocessed_paras['HH'])
bp.combine(data_dir, w, h, out_path, file_type=['tif'], datetype=tif_type)
bp.combine_new(data_dir, w, h, out_path, file_type=['tif'], datetype=tif_type)
# 添加地理信息
soil_moisture_path = self.__workspace_processing_path + 'soil_moisture.tif'

View File

@ -0,0 +1,60 @@
<Root>
<ProductBasicInfo>
<ProductName>后向散射系数</ProductName>
<ProductIdentifier>BackScattering</ProductIdentifier>
<ProductLevel>5</ProductLevel>
<ProductResolution> </ProductResolution>
<ProductDate> </ProductDate>
<ProductFormat> </ProductFormat>
<CompressionMethod> </CompressionMethod>
<ProductSize> </ProductSize>
<SpatialCoverageInformation>
<TopLeftLatitude> </TopLeftLatitude>
<TopLeftLongitude> </TopLeftLongitude>
<TopRightLatitude> </TopRightLatitude>
<TopRightLongitude> </TopRightLongitude>
<BottomRightLatitude> </BottomRightLatitude>
<BottomRightLongitude> </BottomRightLongitude>
<BottomLeftLatitude> </BottomLeftLatitude>
<BottomLeftLongitude> </BottomLeftLongitude>
<CenterLatitude> </CenterLatitude>
<CenterLongitude> </CenterLongitude>
</SpatialCoverageInformation>
<TimeCoverageInformation>
<StartTime> </StartTime>
<EndTime> </EndTime>
<CenterTime> </CenterTime>
</TimeCoverageInformation>
<CoordinateReferenceSystemInformation>
<MapProjection> </MapProjection>
<EarthEllipsoid> </EarthEllipsoid>
<ZoneNo> </ZoneNo>
</CoordinateReferenceSystemInformation>
<MetaInfo>
<Unit> </Unit>
<UnitDes> </UnitDes>
</MetaInfo>
</ProductBasicInfo>
<ProductProductionInfo>
<DataSources number="1">
<DataSource>
<Satellite> </Satellite>
<Sensor> </Sensor>
</DataSource>
</DataSources>
<ObservationGeometry>
<SatelliteAzimuth> </SatelliteAzimuth>
<SatelliteRange> </SatelliteRange>
</ObservationGeometry>
<BandSelection>1</BandSelection>
<DataSourceDescription>None</DataSourceDescription>
<DataSourceProcessingDescription>参考产品介绍PDF</DataSourceProcessingDescription>
<ProductionDate> </ProductionDate>
<AuxiliaryDataDescription> </AuxiliaryDataDescription>
</ProductProductionInfo>
<ProductPublishInfo>
<Processor>德清</Processor>
<DistributionUnit> </DistributionUnit>
<ContactInformation> </ContactInformation>
</ProductPublishInfo>
</Root>

Binary file not shown.

60
soilSalinity/product.xml Normal file
View File

@ -0,0 +1,60 @@
<Root>
<ProductBasicInfo>
<ProductName>后向散射系数</ProductName>
<ProductIdentifier>BackScattering</ProductIdentifier>
<ProductLevel>5</ProductLevel>
<ProductResolution> </ProductResolution>
<ProductDate> </ProductDate>
<ProductFormat> </ProductFormat>
<CompressionMethod> </CompressionMethod>
<ProductSize> </ProductSize>
<SpatialCoverageInformation>
<TopLeftLatitude> </TopLeftLatitude>
<TopLeftLongitude> </TopLeftLongitude>
<TopRightLatitude> </TopRightLatitude>
<TopRightLongitude> </TopRightLongitude>
<BottomRightLatitude> </BottomRightLatitude>
<BottomRightLongitude> </BottomRightLongitude>
<BottomLeftLatitude> </BottomLeftLatitude>
<BottomLeftLongitude> </BottomLeftLongitude>
<CenterLatitude> </CenterLatitude>
<CenterLongitude> </CenterLongitude>
</SpatialCoverageInformation>
<TimeCoverageInformation>
<StartTime> </StartTime>
<EndTime> </EndTime>
<CenterTime> </CenterTime>
</TimeCoverageInformation>
<CoordinateReferenceSystemInformation>
<MapProjection> </MapProjection>
<EarthEllipsoid> </EarthEllipsoid>
<ZoneNo> </ZoneNo>
</CoordinateReferenceSystemInformation>
<MetaInfo>
<Unit> </Unit>
<UnitDes> </UnitDes>
</MetaInfo>
</ProductBasicInfo>
<ProductProductionInfo>
<DataSources number="1">
<DataSource>
<Satellite> </Satellite>
<Sensor> </Sensor>
</DataSource>
</DataSources>
<ObservationGeometry>
<SatelliteAzimuth> </SatelliteAzimuth>
<SatelliteRange> </SatelliteRange>
</ObservationGeometry>
<BandSelection>1</BandSelection>
<DataSourceDescription>None</DataSourceDescription>
<DataSourceProcessingDescription>参考产品介绍PDF</DataSourceProcessingDescription>
<ProductionDate> </ProductionDate>
<AuxiliaryDataDescription> </AuxiliaryDataDescription>
</ProductProductionInfo>
<ProductPublishInfo>
<Processor>德清</Processor>
<DistributionUnit> </DistributionUnit>
<ContactInformation> </ContactInformation>
</ProductPublishInfo>
</Root>

View File

@ -0,0 +1,60 @@
<Root>
<ProductBasicInfo>
<ProductName>后向散射系数</ProductName>
<ProductIdentifier>BackScattering</ProductIdentifier>
<ProductLevel>5</ProductLevel>
<ProductResolution> </ProductResolution>
<ProductDate> </ProductDate>
<ProductFormat> </ProductFormat>
<CompressionMethod> </CompressionMethod>
<ProductSize> </ProductSize>
<SpatialCoverageInformation>
<TopLeftLatitude> </TopLeftLatitude>
<TopLeftLongitude> </TopLeftLongitude>
<TopRightLatitude> </TopRightLatitude>
<TopRightLongitude> </TopRightLongitude>
<BottomRightLatitude> </BottomRightLatitude>
<BottomRightLongitude> </BottomRightLongitude>
<BottomLeftLatitude> </BottomLeftLatitude>
<BottomLeftLongitude> </BottomLeftLongitude>
<CenterLatitude> </CenterLatitude>
<CenterLongitude> </CenterLongitude>
</SpatialCoverageInformation>
<TimeCoverageInformation>
<StartTime> </StartTime>
<EndTime> </EndTime>
<CenterTime> </CenterTime>
</TimeCoverageInformation>
<CoordinateReferenceSystemInformation>
<MapProjection> </MapProjection>
<EarthEllipsoid> </EarthEllipsoid>
<ZoneNo> </ZoneNo>
</CoordinateReferenceSystemInformation>
<MetaInfo>
<Unit> </Unit>
<UnitDes> </UnitDes>
</MetaInfo>
</ProductBasicInfo>
<ProductProductionInfo>
<DataSources number="1">
<DataSource>
<Satellite> </Satellite>
<Sensor> </Sensor>
</DataSource>
</DataSources>
<ObservationGeometry>
<SatelliteAzimuth> </SatelliteAzimuth>
<SatelliteRange> </SatelliteRange>
</ObservationGeometry>
<BandSelection>1</BandSelection>
<DataSourceDescription>None</DataSourceDescription>
<DataSourceProcessingDescription>参考产品介绍PDF</DataSourceProcessingDescription>
<ProductionDate> </ProductionDate>
<AuxiliaryDataDescription> </AuxiliaryDataDescription>
</ProductProductionInfo>
<ProductPublishInfo>
<Processor>德清</Processor>
<DistributionUnit> </DistributionUnit>
<ContactInformation> </ContactInformation>
</ProductPublishInfo>
</Root>

View File

@ -0,0 +1,60 @@
<Root>
<ProductBasicInfo>
<ProductName>后向散射系数</ProductName>
<ProductIdentifier>BackScattering</ProductIdentifier>
<ProductLevel>5</ProductLevel>
<ProductResolution> </ProductResolution>
<ProductDate> </ProductDate>
<ProductFormat> </ProductFormat>
<CompressionMethod> </CompressionMethod>
<ProductSize> </ProductSize>
<SpatialCoverageInformation>
<TopLeftLatitude> </TopLeftLatitude>
<TopLeftLongitude> </TopLeftLongitude>
<TopRightLatitude> </TopRightLatitude>
<TopRightLongitude> </TopRightLongitude>
<BottomRightLatitude> </BottomRightLatitude>
<BottomRightLongitude> </BottomRightLongitude>
<BottomLeftLatitude> </BottomLeftLatitude>
<BottomLeftLongitude> </BottomLeftLongitude>
<CenterLatitude> </CenterLatitude>
<CenterLongitude> </CenterLongitude>
</SpatialCoverageInformation>
<TimeCoverageInformation>
<StartTime> </StartTime>
<EndTime> </EndTime>
<CenterTime> </CenterTime>
</TimeCoverageInformation>
<CoordinateReferenceSystemInformation>
<MapProjection> </MapProjection>
<EarthEllipsoid> </EarthEllipsoid>
<ZoneNo> </ZoneNo>
</CoordinateReferenceSystemInformation>
<MetaInfo>
<Unit> </Unit>
<UnitDes> </UnitDes>
</MetaInfo>
</ProductBasicInfo>
<ProductProductionInfo>
<DataSources number="1">
<DataSource>
<Satellite> </Satellite>
<Sensor> </Sensor>
</DataSource>
</DataSources>
<ObservationGeometry>
<SatelliteAzimuth> </SatelliteAzimuth>
<SatelliteRange> </SatelliteRange>
</ObservationGeometry>
<BandSelection>1</BandSelection>
<DataSourceDescription>None</DataSourceDescription>
<DataSourceProcessingDescription>参考产品介绍PDF</DataSourceProcessingDescription>
<ProductionDate> </ProductionDate>
<AuxiliaryDataDescription> </AuxiliaryDataDescription>
</ProductProductionInfo>
<ProductPublishInfo>
<Processor>德清</Processor>
<DistributionUnit> </DistributionUnit>
<ContactInformation> </ContactInformation>
</ProductPublishInfo>
</Root>

View File

@ -0,0 +1,79 @@
#encoding=utf-8
import xml.etree.ElementTree as ET
import pandas as pd
import csv
def xml2csv(xmlpath):
tree_obj = ET.parse(xmlpath)
# 得到所有匹配Region 标签的Element对象的list集合
list_Region = tree_obj.findall("Region")
for Region in list_Region:
# 几何面对应的类(phenology_name)在标签<Region name="water" color="255,0,0">
Region_dict = Region.attrib
phenology_name = Region_dict.get("name")
print(phenology_name)
list_GeometryDef = Region.findall("GeometryDef")
list_Polygon = list_GeometryDef[0].findall("Polygon") # 获得该类下的几何面list
for polygon in list_Polygon:
# 从polygon list中获取得到<Coordinates>标签的数据 注意是空格分隔的和csv中不同
Coordinates_list = coordinates = polygon.find('.//Coordinates').text.strip().split()
# POLYGON((119.035 31.51,119.035 31.50,119.033 31.50)) csv中
print("value")
# 向csv中写
def csvfile(csvpath,data):
with open(csvpath, 'a', newline='') as file:
# 2. step
writer = csv.writer(file)
# data example
#data = ["This", "is", "a", "Test"]
writer.writerow(data)
# Define the structure of the data
#data示例 student_header = ['name', 'age', 'major', 'minor']
def csvcreateTitile(csvpath,data):
# 1. Open a new CSV file
with open(csvpath, 'w') as file:
# 2. Create a CSV writer
writer = csv.writer(file)
# 3. Write data to the file
writer.writerow(data)
# 将列表中的坐标对转换为字符串
def createcsv_roi_polygon(coordinates):
coord_str = ', '.join([f'{coordinates[i]} {coordinates[i + 1]}' for i in range(0, len(coordinates), 2)])
# 构建最终的POLYGON字符串
polygon_str = f'POLYGON(({coord_str}))'
print(polygon_str)
return polygon_str
if __name__ == '__main__':
xmlpath = r"E:\MicroWorkspace\GF3A_nanjing\input-ortho\test_shp\test.xml"
tree_obj = ET.parse(xmlpath)
csv_header = ['sar_img_name', 'phenology_id', 'phenology_name', 'roi_polygon']
csvpath = r"E:\MicroWorkspace\GF3A_nanjing\input-ortho\test_shp\test.csv"
# csvcreateTitile(csvpath,csv_header)
csvfile(csvpath,csv_header)
# 得到所有匹配Region 标签的Element对象的list集合
list_Region = tree_obj.findall("Region")
for Region in list_Region:
# 几何面对应的类(phenology_name)在标签<Region name="water" color="255,0,0">
Region_dict = Region.attrib
phenology_name = Region_dict.get("name")
print(phenology_name)
# list_GeometryDef = Region.findall("GeometryDef")
list_Polygon = Region.findall(".//Polygon") # 获得该类下的几何面list
count = 1
for polygon in list_Polygon:
# 从polygon list中获取得到<Coordinates>标签的数据 注意是空格分隔的和csv中不同
Coordinates_list = coordinates = polygon.find('.//Coordinates').text.strip().split()
# 将坐标和ploygon对应的写入到.csv中
polygon_str=createcsv_roi_polygon(Coordinates_list)
# POLYGON((119.035 31.51,119.035 31.50,119.033 31.50)) csv中
data = ['0', count, phenology_name, polygon_str]
csvfile(csvpath,data)
count += 1