更新通用工具集,修改分块计算边界以及合并分块模块

Mn
tian jiax 2023-09-01 17:01:15 +08:00
parent e6468adc8a
commit 0d96100f69
2 changed files with 168 additions and 23 deletions

View File

@ -220,6 +220,83 @@ class BlockProcess:
count += 1
return True
def cut_new(self, in_dir, out_dir, file_type=['tif', 'tiff'], out_type='tif', out_size=2048):
"""
:param in_dir:存放待裁剪的影像文件夹不用指定到tif文件
:param out_dir:存放裁剪结果的影像文件夹
:param file_type:待裁剪的影像文件类型tiftiffbmpjpgpng等等
:param out_type:裁剪结果影像文件类型
:param out_size:裁剪尺寸裁剪为n*n的方形
:return: True or Flase
20230831修改 ----tjx
"""
if not os.path.exists(out_dir):
os.makedirs(out_dir)
data_dir_list, _ = self.get_file_names(in_dir, file_type)
count = 0
for each_dir in data_dir_list:
name_suffix = os.path.basename(each_dir)
img_name = os.path.splitext(name_suffix)[0]
# gdal读取方法
image = self.__get_band_array(each_dir, 1)
block_x = int(np.ceil(image.shape[1] / out_size))
block_y = int(np.ceil(image.shape[0] / out_size)) # todo 修改分块
for i in range(block_y):
for j in range(block_x):
start_x = j * out_size
start_y = i * out_size
end_x = image.shape[1] if (j + 1) * out_size > image.shape[1] else (j + 1) * out_size
end_y = image.shape[0] if (i + 1) * out_size > image.shape[0] else (i + 1) * out_size
out_dir_images = os.path.join(out_dir, img_name + '_' + str(start_x) + '_' + str(end_x) + '_' + str(start_y) + '_' + str(
end_y) + '.' + out_type)
# print(out_dir_images)
# cut_factor_row = int(np.ceil(image.shape[0] / out_size))
# cut_factor_clo = int(np.ceil(image.shape[1] / out_size))
# for i in range(cut_factor_row):
# for j in range(cut_factor_clo):
#
# if i == cut_factor_row - 1:
# i = image.shape[0] / out_size - 1
# else:
# pass
#
# if j == cut_factor_clo - 1:
# j = image.shape[1] / out_size - 1
# else:
# pass
#
# start_x = int(np.rint(i * out_size))
# start_y = int(np.rint(j * out_size))
# end_x = int(np.rint((i + 1) * out_size))
# end_y = int(np.rint((j + 1) * out_size))
# out_dir_images = os.path.join(out_dir, img_name + '_' + str(start_x) + '_' + str(end_x) + '_' + str(start_y) + '_' + str(
# end_y) + '.' + out_type)
# + '/' + img_name \
# + '_' + str(start_x) + '_' + str(end_x) + '_' + str(start_y) + '_' + str(
# end_y) + '.' + out_type
# temp_image = image[start_x:end_x, start_y:end_y]
# out_image = Image.fromarray(temp_data)
# out_image = Image.fromarray(temp_image)
# out_image.save(out_dir_images)
data = ImageHandler.get_data(each_dir)
if ImageHandler.get_bands(each_dir) > 1:
# temp_data = data[:,start_x:end_x, start_y:end_y]
temp_data = data[:,start_y:end_y, start_x:end_x]
else:
# temp_data = data[start_x:end_x, start_y:end_y]
temp_data = data[start_y:end_y, start_x:end_x]
ImageHandler.write_img(out_dir_images, '', [0, 0, 0, 0, 0, 0], temp_data)
count += 1
return True
def combine(self, data_dir, w, h, out_dir, out_type='tif', file_type=['tif', 'tiff'], datetype='float16'):
"""
:param data_dir: 存放待裁剪的影像文件夹不用指定到tif文件
@ -261,6 +338,70 @@ class BlockProcess:
count += 1
return True
# todo 20230901 修改分块同步修改合并代码
def combine_new(self, data_dir, w, h, out_dir, out_type='tif', file_type=['tif', 'tiff'], datetype='float16'):
"""
:param data_dir: 存放待裁剪的影像文件夹不用指定到tif文件
:param w 拼接影像的宽度
:param h 拼接影像的高度
:param out_dir: 存放裁剪结果的影像文件夹
:param out_type: 裁剪结果影像文件类型
:param file_type: 待裁剪的影像文件类型
:param datetype:数据类型 int8int16float16float32
:return: True or Flase
"""
if not os.path.exists(out_dir):
os.makedirs(out_dir)
img_dir, img_name = self.get_file_names(data_dir, file_type)
dir_dict = self.get_same_img(img_dir, img_name)
count = 0
for key in dir_dict.keys():
dir_list = dir_dict[key]
bands = ImageHandler.get_bands(dir_list[0])
if bands > 1:
temp_label = np.zeros(shape=(bands, h, w), dtype=datetype)
for item in dir_list:
name_split = item.split('_')
x_start = int(name_split[-4])
x_end = int(name_split[-3])
y_start = int(name_split[-2])
y_end = int(name_split[-1].split('.')[0])
# img = Image.open(item)
img = ImageHandler.get_band_array(item, 1)
img = np.array(img)
temp_label[:, y_start:y_end, x_start:x_end] = img
img_name = key + '.' + out_type
new_out_dir = os.path.join(out_dir, img_name)
ImageHandler.write_img(new_out_dir, '', [0, 0, 0, 0, 0, 0], temp_label)
# label = Image.fromarray(temp_label)
# label.save(new_out_dir)
count += 1
else:
temp_label = np.zeros(shape=(h, w), dtype=datetype)
for item in dir_list:
name_split = item.split('_')
x_start = int(name_split[-4])
x_end = int(name_split[-3])
y_start = int(name_split[-2])
y_end = int(name_split[-1].split('.')[0])
# img = Image.open(item)
img = ImageHandler.get_band_array(item, 1)
img = np.array(img)
temp_label[y_start:y_end, x_start:x_end] = img
img_name = key + '.' + out_type
new_out_dir = os.path.join(out_dir, img_name)
ImageHandler.write_img(new_out_dir, '', [0, 0, 0, 0, 0, 0], temp_label)
# label = Image.fromarray(temp_label)
# label.save(new_out_dir)
count += 1
return True
def combine_Tif(self, data_dir, w, h, out_dir, proj, geo, out_type='tif', file_type=['tif', 'tiff'],
datetype='float16'):
"""
@ -298,30 +439,30 @@ class BlockProcess:
img_name = key + '.' + out_type
new_out_dir = os.path.join(out_dir,img_name)
image_handler.write_img(new_out_dir, proj, geo, temp_label)
count += 1
return True
# if __name__ == '__main__':
# bp = BlockProcess()
# # cut
# data_dir = r"D:\DATA\testdata1"
# out_dir = r"D:\DATA\testdata1\cut255"
# file_type = ['tif']
# out_type = 'tif'
# cut_size = 2048
#
# # bp.cut(data_dir, out_dir, file_type, out_type, cut_size)
# # combine
# data_dir=r"D:\Workspace\SoilMoisture\Temporary\test"
# w= 4626
# h= 2313
# out_dir=r"D:\Workspace\SoilMoisture\Temporary\combine"
# out_type='tif'
# file_type=['tif']
# src_path = r"D:\Workspace\SoilMoisture\Temporary\preprocessed\HH_preprocessed.tif"
# datetype = bp.get_tif_dtype(src_path)
# bp.combine(data_dir, w, h, out_dir, out_type, file_type, datetype)
# # # cut
# data_dir = r"D:\BaiduNetdiskDownload\HF\cut"
# out_dir = r"D:\BaiduNetdiskDownload\HF\cut_out"
# file_type = ['tif']
# out_type = 'tif'
# cut_size = 512
#
# bp.cut_new(data_dir, out_dir, file_type, out_type, cut_size)
# # # combine
# # data_dir=r"D:\Workspace\SoilMoisture\Temporary\test"
# w= 5043
# h= 1239
# out_dirs=r"D:\BaiduNetdiskDownload\HF\cut_outs"
# # out_type='tif'
# # file_type=['tif']
# datetype = 'float'
# # src_path = r"D:\Workspace\SoilMoisture\Temporary\preprocessed\HH_preprocessed.tif"
# # datetype = bp.get_tif_dtype(src_path)
# bp.combine_new(out_dir, w, h, out_dirs, out_type, file_type, datetype)
#
# # 添加地理信息

View File

@ -423,12 +423,14 @@ class ImageHandler:
outband = dataset.GetRasterBand(1)
outband.WriteArray(im_data)
if no_data != 'null':
outband.SetNoDataValue(no_data)
outband.SetNoDataValue(np.double(no_data))
outband.FlushCache()
else:
for i in range(im_bands):
outband = dataset.GetRasterBand(1 + i)
outband.WriteArray(im_data[i])
if no_data != 'null':
outband.SetNoDataValue(np.double(no_data))
outband.FlushCache()
# outRaster.GetRasterBand(i + 1).WriteArray(array[i])
del dataset
@ -624,11 +626,13 @@ class ImageHandler:
temp = np.zeros((2, lon_arr.shape[0], lon_arr.shape[1]), dtype=float)
temp[0, :, :] = lon_arr
temp[1, :, :] = lat_arr
self.write_img(ori_sim, '', [0.0, 1.0, 0.0, 0.0, 0.0, 1.0], temp)
self.write_img(ori_sim, '', [0.0, 1.0, 0.0, 0.0, 0.0, 1.0], temp, '0')
# if __name__ == '__main__':
# path = r"I:\MicroWorkspace\product\C-SAR\Ortho\Output\GF3B_MYC_QPSI_003581_E120.6_N31.3_20220729_L1A_AHV_L10000073024_RPC\RPC_ori_sim.tif"
# s = ImageHandler().get_scope_ori_sim(path)
# path = r'D:\BaiduNetdiskDownload\GZ\lon.rdr'
# path2 = r'D:\BaiduNetdiskDownload\GZ\lat.rdr'
# path3 = r'D:\BaiduNetdiskDownload\GZ\lon_lat.tif'
# s = ImageHandler().band_merge(path, path2, path3)
# print(s)
# pass