258 lines
7.3 KiB
Python
258 lines
7.3 KiB
Python
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import operator
|
||
|
import statistics
|
||
|
from bisect import bisect_left
|
||
|
from bisect import bisect_right
|
||
|
|
||
|
from .utils import cached_property
|
||
|
from .utils import funcname
|
||
|
from .utils import get_cprofile_functions
|
||
|
|
||
|
|
||
|
class Stats(object):
|
||
|
fields = (
|
||
|
"min", "max", "mean", "stddev", "rounds", "median", "iqr", "q1", "q3", "iqr_outliers", "stddev_outliers",
|
||
|
"outliers", "ld15iqr", "hd15iqr", "ops", "total"
|
||
|
)
|
||
|
|
||
|
def __init__(self):
|
||
|
self.data = []
|
||
|
|
||
|
def __bool__(self):
|
||
|
return bool(self.data)
|
||
|
|
||
|
def __nonzero__(self):
|
||
|
return bool(self.data)
|
||
|
|
||
|
def as_dict(self):
|
||
|
return dict(
|
||
|
(field, getattr(self, field))
|
||
|
for field in self.fields
|
||
|
)
|
||
|
|
||
|
def update(self, duration):
|
||
|
self.data.append(duration)
|
||
|
|
||
|
@cached_property
|
||
|
def sorted_data(self):
|
||
|
return sorted(self.data)
|
||
|
|
||
|
@cached_property
|
||
|
def total(self):
|
||
|
return sum(self.data)
|
||
|
|
||
|
@cached_property
|
||
|
def min(self):
|
||
|
return min(self.data)
|
||
|
|
||
|
@cached_property
|
||
|
def max(self):
|
||
|
return max(self.data)
|
||
|
|
||
|
@cached_property
|
||
|
def mean(self):
|
||
|
return statistics.mean(self.data)
|
||
|
|
||
|
@cached_property
|
||
|
def stddev(self):
|
||
|
if len(self.data) > 1:
|
||
|
return statistics.stdev(self.data)
|
||
|
else:
|
||
|
return 0
|
||
|
|
||
|
@property
|
||
|
def stddev_outliers(self):
|
||
|
"""
|
||
|
Count of StdDev outliers: what's beyond (Mean - StdDev, Mean - StdDev)
|
||
|
"""
|
||
|
count = 0
|
||
|
q0 = self.mean - self.stddev
|
||
|
q4 = self.mean + self.stddev
|
||
|
for val in self.data:
|
||
|
if val < q0 or val > q4:
|
||
|
count += 1
|
||
|
return count
|
||
|
|
||
|
@cached_property
|
||
|
def rounds(self):
|
||
|
return len(self.data)
|
||
|
|
||
|
@cached_property
|
||
|
def median(self):
|
||
|
return statistics.median(self.data)
|
||
|
|
||
|
@cached_property
|
||
|
def ld15iqr(self):
|
||
|
"""
|
||
|
Tukey-style Lowest Datum within 1.5 IQR under Q1.
|
||
|
"""
|
||
|
if len(self.data) == 1:
|
||
|
return self.data[0]
|
||
|
else:
|
||
|
return self.sorted_data[bisect_left(self.sorted_data, self.q1 - 1.5 * self.iqr)]
|
||
|
|
||
|
@cached_property
|
||
|
def hd15iqr(self):
|
||
|
"""
|
||
|
Tukey-style Highest Datum within 1.5 IQR over Q3.
|
||
|
"""
|
||
|
if len(self.data) == 1:
|
||
|
return self.data[0]
|
||
|
else:
|
||
|
pos = bisect_right(self.sorted_data, self.q3 + 1.5 * self.iqr)
|
||
|
if pos == len(self.data):
|
||
|
return self.sorted_data[-1]
|
||
|
else:
|
||
|
return self.sorted_data[pos]
|
||
|
|
||
|
@cached_property
|
||
|
def q1(self):
|
||
|
rounds = self.rounds
|
||
|
data = self.sorted_data
|
||
|
|
||
|
# See: https://en.wikipedia.org/wiki/Quartile#Computing_methods
|
||
|
if rounds == 1:
|
||
|
return data[0]
|
||
|
elif rounds % 2: # Method 3
|
||
|
n, q = rounds // 4, rounds % 4
|
||
|
if q == 1:
|
||
|
return 0.25 * data[n - 1] + 0.75 * data[n]
|
||
|
else:
|
||
|
return 0.75 * data[n] + 0.25 * data[n + 1]
|
||
|
else: # Method 2
|
||
|
return statistics.median(data[:rounds // 2])
|
||
|
|
||
|
@cached_property
|
||
|
def q3(self):
|
||
|
rounds = self.rounds
|
||
|
data = self.sorted_data
|
||
|
|
||
|
# See: https://en.wikipedia.org/wiki/Quartile#Computing_methods
|
||
|
if rounds == 1:
|
||
|
return data[0]
|
||
|
elif rounds % 2: # Method 3
|
||
|
n, q = rounds // 4, rounds % 4
|
||
|
if q == 1:
|
||
|
return 0.75 * data[3 * n] + 0.25 * data[3 * n + 1]
|
||
|
else:
|
||
|
return 0.25 * data[3 * n + 1] + 0.75 * data[3 * n + 2]
|
||
|
else: # Method 2
|
||
|
return statistics.median(data[rounds // 2:])
|
||
|
|
||
|
@cached_property
|
||
|
def iqr(self):
|
||
|
return self.q3 - self.q1
|
||
|
|
||
|
@property
|
||
|
def iqr_outliers(self):
|
||
|
"""
|
||
|
Count of Tukey outliers: what's beyond (Q1 - 1.5IQR, Q3 + 1.5IQR)
|
||
|
"""
|
||
|
count = 0
|
||
|
q0 = self.q1 - 1.5 * self.iqr
|
||
|
q4 = self.q3 + 1.5 * self.iqr
|
||
|
for val in self.data:
|
||
|
if val < q0 or val > q4:
|
||
|
count += 1
|
||
|
return count
|
||
|
|
||
|
@cached_property
|
||
|
def outliers(self):
|
||
|
return "%s;%s" % (self.stddev_outliers, self.iqr_outliers)
|
||
|
|
||
|
@cached_property
|
||
|
def ops(self):
|
||
|
if self.total:
|
||
|
return self.rounds / self.total
|
||
|
return 0
|
||
|
|
||
|
|
||
|
class Metadata(object):
|
||
|
def __init__(self, fixture, iterations, options):
|
||
|
self.name = fixture.name
|
||
|
self.fullname = fixture.fullname
|
||
|
self.group = fixture.group
|
||
|
self.param = fixture.param
|
||
|
self.params = fixture.params
|
||
|
self.extra_info = fixture.extra_info
|
||
|
self.cprofile_stats = fixture.cprofile_stats
|
||
|
|
||
|
self.iterations = iterations
|
||
|
self.stats = Stats()
|
||
|
self.options = options
|
||
|
self.fixture = fixture
|
||
|
|
||
|
def __bool__(self):
|
||
|
return bool(self.stats)
|
||
|
|
||
|
def __nonzero__(self):
|
||
|
return bool(self.stats)
|
||
|
|
||
|
def get(self, key, default=None):
|
||
|
try:
|
||
|
return getattr(self.stats, key)
|
||
|
except AttributeError:
|
||
|
return getattr(self, key, default)
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
try:
|
||
|
return getattr(self.stats, key)
|
||
|
except AttributeError:
|
||
|
return getattr(self, key)
|
||
|
|
||
|
@property
|
||
|
def has_error(self):
|
||
|
return self.fixture.has_error
|
||
|
|
||
|
def as_dict(self, include_data=True, flat=False, stats=True, cprofile=None):
|
||
|
result = {
|
||
|
"group": self.group,
|
||
|
"name": self.name,
|
||
|
"fullname": self.fullname,
|
||
|
"params": self.params,
|
||
|
"param": self.param,
|
||
|
"extra_info": self.extra_info,
|
||
|
"options": dict(
|
||
|
(k, funcname(v) if callable(v) else v) for k, v in self.options.items()
|
||
|
)
|
||
|
}
|
||
|
if self.cprofile_stats:
|
||
|
cprofile_list = result["cprofile"] = []
|
||
|
cprofile_functions = get_cprofile_functions(self.cprofile_stats)
|
||
|
stats_columns = ["cumtime", "tottime", "ncalls", "ncalls_recursion",
|
||
|
"tottime_per", "cumtime_per", "function_name"]
|
||
|
# move column first
|
||
|
if cprofile is not None:
|
||
|
stats_columns.remove(cprofile)
|
||
|
stats_columns.insert(0, cprofile)
|
||
|
for column in stats_columns:
|
||
|
cprofile_functions.sort(key=operator.itemgetter(column), reverse=True)
|
||
|
for cprofile_function in cprofile_functions[:25]:
|
||
|
if cprofile_function not in cprofile_list:
|
||
|
cprofile_list.append(cprofile_function)
|
||
|
# if we want only one column or we already have all available functions
|
||
|
if cprofile is None or len(cprofile_functions) == len(cprofile_list):
|
||
|
break
|
||
|
if stats:
|
||
|
stats = self.stats.as_dict()
|
||
|
if include_data:
|
||
|
stats["data"] = self.stats.data
|
||
|
stats["iterations"] = self.iterations
|
||
|
if flat:
|
||
|
result.update(stats)
|
||
|
else:
|
||
|
result["stats"] = stats
|
||
|
return result
|
||
|
|
||
|
def update(self, duration):
|
||
|
self.stats.update(duration / self.iterations)
|
||
|
|
||
|
|
||
|
def normalize_stats(stats):
|
||
|
if 'ops' not in stats:
|
||
|
# fill field added in 3.1.0
|
||
|
stats['ops'] = 1 / stats['mean']
|
||
|
return stats
|