microproduct/surfaceRoughness_oh2004/SurfaceRoughnessMain.py

396 lines
19 KiB
Python
Raw Normal View History

2023-08-28 10:17:29 +00:00
# -*- coding: UTF-8 -*-
"""
@Project microproduct
@File SoilMoistureMain.py
@Author SHJ
@Contact
@Date 2021/7/26 17:11
@Version 1.0.0
修改历史
[修改序列] [修改日期] [修改者] [修改内容]
1 2022-6-30 石海军 1.使用cover_roi_id来选取ROI区域; 2.内部处理使用地理坐标系(4326)
"""
import glob
from osgeo import osr
from tool.algorithm.algtools.PreProcess import PreProcess as pp
from tool.algorithm.transforml1a.transHandle import TransImgL1A
from tool.algorithm.xml.AlgXmlHandle import ManageAlgXML, CheckSource,InitPara # 导入xml文件读取与检查文件
from tool.algorithm.image.ImageHandle import ImageHandler
from tool.algorithm.algtools.logHandler import LogHandler
from SurfaceRoughnessAlg import MoistureAlg as alg
2023-08-28 10:17:29 +00:00
from tool.algorithm.block.blockprocess import BlockProcess
from tool.algorithm.algtools.MetaDataHandler import MetaDataHandler
from tool.algorithm.xml.CreateMetaDict import CreateMetaDict, CreateProductXml
2023-08-28 10:17:29 +00:00
from tool.config.ConfigeHandle import Config as cf
from tool.algorithm.xml.CreatMetafile import CreateMetafile
from tool.algorithm.algtools.ROIAlg import ROIAlg as roi
from SurfaceRoughnessXmlInfo import CreateDict, CreateStadardXmlFile
2023-08-28 10:17:29 +00:00
from tool.algorithm.algtools.filter.lee_Filter import Filter
from tool.file.fileHandle import fileHandle
from SurfaceRoughnessTool import SoilMoistureTool
2023-08-28 10:17:29 +00:00
import logging
import os
import shutil
import datetime
import numpy as np
import sys
import multiprocessing
cover_id_list = []
threshold_of_ndvi_min = 0
threshold_of_ndvi_max = 0
multiprocessing_num = int(cf.get('multiprocessing_num'))
if cf.get('debug') == 'True':
DEBUG = True
else:
DEBUG = False
file =fileHandle(DEBUG)
EXE_NAME = cf.get('exe_name')
FILTER_SIZE = int(cf.get('filter_size'))
soil_moisture_value_min = float(cf.get('product_value_min'))
soil_moisture_value_max = float(cf.get('product_value_max'))
2023-09-01 09:02:30 +00:00
pixelspace=float(cf.get('pixelspace'))
2023-08-28 10:17:29 +00:00
LogHandler.init_log_handler('run_log\\' + EXE_NAME)
logger = logging.getLogger("mylog")
env_str = os.path.split(os.path.realpath(__file__))[0]
os.environ['PROJ_LIB'] = env_str
class MoistureMain:
"""
土壤水分处理主函数
"""
def __init__(self, alg_xml_path):
self.alg_xml_path = alg_xml_path
self.imageHandler = ImageHandler()
self.__alg_xml_handler = ManageAlgXML(alg_xml_path)
self.__check_handler = CheckSource(self.__alg_xml_handler)
self.__workspace_path, self.__out_para = None, None
self.__input_paras, self.__output_paras, self.__processing_paras, self.__preprocessed_paras = {},{},{},{}
# 参考影像路径
self.__ref_img_path = ''
# 宽/列数,高/行数
self.__cols, self.__rows = 0, 0
# 坐标系
self.__proj = ''
# 影像投影变换矩阵
self.__geo = [0, 0, 0, 0, 0, 0]
self.name = ''
def check_source(self):
"""
检查算法相关的配置文件图像辅助文件是否齐全
"""
env_str = os.getcwd()
logger.info("sysdir: %s", env_str)
if self.__check_handler.check_alg_xml() is False:
return False
if self.__check_handler.check_run_env() is False:
return False
input_para_names = ['box', 'DualPolarSAR']
if self.__check_handler.check_input_paras(input_para_names) is False:
return False
self.__workspace_path = self.__alg_xml_handler.get_workspace_path()
self.__create_work_space()
self.__input_paras = self.__alg_xml_handler.get_input_paras()
self.__processing_paras = InitPara.init_processing_paras(self.__input_paras)
self.__processing_paras.update(self.get_tar_gz_inf(self.__processing_paras["sar_path0"]))
self.__out_para = os.path.join(self.__workspace_path, EXE_NAME, 'Output', r"SurfaceRoughnessProduct.tar.gz")
self.__alg_xml_handler.write_out_para("SurfaceRoughnessProduct", self.__out_para) #写入输出参数
logger.info('check_source success!')
logger.info('progress bar: 10%')
return True
def get_tar_gz_inf(self, tar_gz_path):
para_dic = {}
self.name = os.path.split(tar_gz_path)[1].rstrip('.tar.gz')
name = os.path.split(tar_gz_path)[1].rstrip('.tar.gz')
file_dir = os.path.join(self.__workspace_preprocessing_path, name + '\\')
file.de_targz(tar_gz_path, file_dir)
# 元文件字典
# para_dic.update(InitPara.get_meta_dic(InitPara.get_meta_paths(file_dir, name), name))
para_dic.update(InitPara.get_meta_dic_new(InitPara.get_meta_paths(file_dir, name), name))
# tif路径字典
parameter_path = os.path.join(file_dir, "orth_para.txt")
para_dic.update({"paraMeter": parameter_path})
2023-08-28 10:17:29 +00:00
pol_dic = InitPara.get_polarization_mode(InitPara.get_tif_paths(file_dir, name))
flag_list = [0, 0, 0, 0]
for key, in_tif_path in pol_dic.items():
# 获取极化类型
if 'HH' == key:
para_dic.update({'HH': in_tif_path})
flag_list[0] = 1
elif 'HV' == key:
para_dic.update({'HV': in_tif_path}) # 如果没有VV用HV代替
flag_list[1] = 1
elif 'VV' == key:
para_dic.update({'VV': in_tif_path})
flag_list[2] = 1
elif 'VH' == key:
para_dic.update({'VH': in_tif_path})
flag_list[3] = 1
elif 'inc_angle' == key:
para_dic.update({'inc_angle': in_tif_path})
elif 'ori_sim' == key:
para_dic.update({'ori_sim': in_tif_path})
elif 'sim_ori' == key:
para_dic.update({'sim_ori': in_tif_path})
2023-08-28 10:17:29 +00:00
elif 'LocalIncidenceAngle' == key:
para_dic.update({'LocalIncidenceAngle': in_tif_path})
elif 'inci_Angle-ortho' == key:
para_dic.update({'inci_Angle-ortho': in_tif_path})
elif 'LocalIncidentAngle-ortho' == key:
para_dic.update({'LocalIncidentAngle-ortho': in_tif_path})
if flag_list != [1, 1, 1, 1]:
raise Exception('There are not tar_gz path: HH、HV(VV)、IncidenceAngle in path:', tar_gz_path)
self.processinfo = flag_list
return para_dic
def __create_work_space(self):
"""
删除原有工作区文件夹,创建新工作区文件夹
"""
self.__workspace_preprocessing_path = self.__workspace_path + EXE_NAME + r'\Temporary\preprocessing''\\'
self.__workspace_preprocessed_path = self.__workspace_path + EXE_NAME + r'\Temporary\preprocessed''\\'
self.__workspace_processing_path = self.__workspace_path + EXE_NAME + r'\Temporary\processing''\\'
self.__workspace_block_tif_path = self.__workspace_path + EXE_NAME + r'\Temporary\blockTif''\\'
self.__workspace_block_tif_processed_path = self.__workspace_path + EXE_NAME + r'\Temporary\blockTifProcessed''\\'
self.__product_dic = self.__workspace_processing_path + 'product\\'
path_list = [self.__workspace_preprocessing_path, self.__workspace_preprocessed_path,
self.__workspace_processing_path, self.__workspace_block_tif_path,
self.__workspace_block_tif_processed_path, self.__product_dic]
file.creat_dirs(path_list)
logger.info('create new workspace success!')
def preprocess_handle(self):
"""
预处理
"""
# para_names = []
# p = pp()
# self.__preprocessed_paras, scopes_roi = p.preprocessing_oh2004(para_names, self.__processing_paras,
# self.__workspace_preprocessing_path, self.__workspace_preprocessed_path)
para_names_geo = ['Covering', 'NDVI', 'inc_angle', 'sim_ori']
2023-08-28 10:17:29 +00:00
p = pp()
cutted_img_paths, scopes_roi = p.cut_geoimg(self.__workspace_preprocessing_path, para_names_geo,
self.__processing_paras)
self.__preprocessed_paras.update(cutted_img_paths)
para_names_l1a = ["HH", "VV", "HV", "VH", 'ori_sim']
2023-08-28 10:17:29 +00:00
self._tr = TransImgL1A(self.__processing_paras['ori_sim'], scopes_roi)
for name in para_names_l1a:
out_path = os.path.join(self.__workspace_preprocessed_path, name + "_preprocessed.tif")
self._tr.cut_L1A(self.__processing_paras[name], out_path)
self.__preprocessed_paras.update({name: out_path})
logger.info('preprocess_handle success!')
self.__cols = self.imageHandler.get_img_width(self.__preprocessed_paras['HH'])
self.__rows = self.imageHandler.get_img_height(self.__preprocessed_paras['HH'])
logger.info('progress bar: 40%')
def create_roi(self):
"""
计算ROI掩膜
:return: 掩膜路径
"""
processing_path = self.__workspace_processing_path
# 利用角度为nan生成Mask
pp.check_LocalIncidenceAngle(self.__preprocessed_paras['LocalIncidenceAngle'], self.__preprocessed_paras['LocalIncidenceAngle'])
angle_nan_mask_path = processing_path + 'angle_nan_mask.tif'
roi.trans_tif2mask(angle_nan_mask_path, self.__preprocessed_paras['LocalIncidenceAngle'], np.nan)
# 利用影像的有效范围生成MASK
tif_mask_path = processing_path + 'tif_mask.tif'
roi.trans_tif2mask(tif_mask_path, self.__preprocessed_paras['HH'], 0, 0) # 00修改为np.nan
tif_zero_mask_path = processing_path + 'tif_mask_zero.tif'
roi.trans_tif2mask(tif_zero_mask_path, self.__preprocessed_paras['HH'], np.nan)
# 利用cover计算植被覆盖范围
cover_mask_path = processing_path + 'cover_mask.tif'
#alg.trans_tif2mask(cover_mask_path, self.__preprocessed_paras['Covering'], threshold_of_cover_min, threshold_of_cover_max)
cover_id_list = list(self.__processing_paras['CoveringIDs'].split(';'))
cover_id_list = [int(num) for num in cover_id_list]
roi.trans_cover2mask(cover_mask_path, self.__preprocessed_paras["Covering"], cover_id_list)
# 利用NDVI计算裸土范围该指数的输出值在 -1.0 和 1.0 之间,大部分表示植被量,
# 负值主要根据云、水和雪而生成
# 接近零的值则主要根据岩石和裸土而生成。
# 较低的(小于等于 0.1NDVI 值表示岩石、沙石或雪覆盖的贫瘠区域。
# 中等值0.2 至 0.3)表示灌木丛和草地
# 较高的值0.6 至 0.8)表示温带雨林和热带雨林。
ndvi_mask_path = processing_path + 'ndvi_mask.tif'
ndvi_scope = list(self.__processing_paras['NDVIScope'].split(';'))
threshold_of_ndvi_min = float(ndvi_scope[0])
threshold_of_ndvi_max = float(ndvi_scope[1])
roi.trans_tif2mask(ndvi_mask_path, self.__preprocessed_paras['NDVI'], threshold_of_ndvi_min, threshold_of_ndvi_max)
logger.info('create masks success!')
# 利用覆盖范围和裸土范围 生成MASK
bare_land_mask_path = processing_path + 'bare_land_mask.tif'
roi.combine_mask(bare_land_mask_path, cover_mask_path, ndvi_mask_path)
roi.combine_mask(bare_land_mask_path, bare_land_mask_path, tif_mask_path)
roi.combine_mask(bare_land_mask_path, bare_land_mask_path, tif_zero_mask_path)
roi.combine_mask(bare_land_mask_path, bare_land_mask_path, angle_nan_mask_path)
logger.info('combine_mask success!')
# 计算roi区域
roi.cal_roi(self.__preprocessed_paras['LocalIncidenceAngle'], self.__preprocessed_paras['LocalIncidenceAngle'],
bare_land_mask_path, background_value=1)
shutil.copyfile(bare_land_mask_path, self.__workspace_preprocessed_path + 'mask.tif')
logger.info('create ROI image success!')
return bare_land_mask_path
def resampleImgs(self, refer_img_path):
ndvi_rampling_path = self.__workspace_processing_path + "ndvi.tif"
pp.resampling_by_scale(self.__preprocessed_paras["NDVI"], ndvi_rampling_path, refer_img_path)
self.__preprocessed_paras["NDVI"] = ndvi_rampling_path
cover_rampling_path = self.__workspace_processing_path + "cover.tif"
pp.resampling_by_scale(self.__preprocessed_paras["Covering"], cover_rampling_path, refer_img_path)
self.__preprocessed_paras["Covering"] = cover_rampling_path
def calInterpolation_bil_Wgs84_rc_sar_sigma(self, parameter_path, dem_rc, in_sar, out_sar):
2023-09-01 09:02:30 +00:00
'''
# std::cout << "mode 11";
# std::cout << "SIMOrthoProgram.exe 11 in_parameter_path in_rc_wgs84_path in_ori_sar_path out_orth_sar_path";
2023-09-01 09:02:30 +00:00
'''
exe_path = r".\baseTool\x64\Release\SIMOrthoProgram.exe"
exe_cmd = r"set PROJ_LIB=.\baseTool\x64\Release; & {0} {1} {2} {3} {4} {5}".format(exe_path, 11, parameter_path,
dem_rc, in_sar, out_sar)
2023-09-01 09:02:30 +00:00
print(exe_cmd)
print(os.system(exe_cmd))
print("==========================================================================")
2023-08-28 10:17:29 +00:00
def process_handle(self,start):
"""
算法主处理函数
:return: True or False
"""
tem_folder = self.__workspace_path + EXE_NAME + r"\Temporary""\\"
soilOh2004 = SoilMoistureTool(self.__workspace_preprocessed_path, self.__workspace_processing_path, self.__cols,
self.__rows, self.__preprocessed_paras['inc_angle'], self.__processing_paras['Origin_META'])
2023-08-28 10:17:29 +00:00
result = soilOh2004.soil_oh2004()
logger.info('progress bar: 80%')
product_temp_path = os.path.join(tem_folder, 'SurfaceRoughnessProduct_temp.tif')
tif_files = list(glob.glob(os.path.join(result, '*.tif')))
for tif_file in tif_files:
if 'oh2004_s' in os.path.basename(tif_file):
shutil.copy(tif_file, product_temp_path)
product_geo_path = os.path.join(tem_folder, 'SurfaceRoughnessProduct_geo.tif')
self.calInterpolation_bil_Wgs84_rc_sar_sigma(self.__processing_paras['paraMeter'],
self.__preprocessed_paras['sim_ori'], product_temp_path,
product_geo_path)
# self.inter_Range2Geo(self.__preprocessed_paras['ori_sim'], product_temp_path, product_geo_path, pixelspace)
2023-09-01 09:02:30 +00:00
# self._tr.l1a_2_geo_int(self.__preprocessed_paras['ori_sim'], product_temp_path, product_geo_path, 'linear')
#
# hh_geo_path = self.__workspace_processing_path + "hh_geo.tif"
# self._tr.l1a_2_geo_int(self.__preprocessed_paras['ori_sim'], self.__preprocessed_paras['HH'], hh_geo_path, 'linear')
2023-08-28 10:17:29 +00:00
self.resampleImgs(product_geo_path)
para_names = ['Covering', 'NDVI']
bare_land_mask_path = roi().roi_process(para_names, self.__workspace_processing_path + "/roi/",
self.__processing_paras, self.__preprocessed_paras)
SrcImageName = os.path.split(self.__input_paras["DualPolarSAR"]['ParaValue'])[1].split('.tar.gz')[0] + '-Roughness.tif'
product_path = os.path.join(self.__product_dic, SrcImageName)
2023-08-28 10:17:29 +00:00
# 获取影像roi区域
roi.cal_roi(product_path, product_geo_path, bare_land_mask_path, background_value=0)
2023-08-28 10:17:29 +00:00
# 生成快视图
self.imageHandler.write_quick_view(product_path)
# 生成元文件案例
xml_path = "./model_meta.xml"
image_path = product_path
out_path1 = os.path.join(tem_folder, "trans_geo_projcs.tif")
out_path2 = os.path.join(tem_folder, "trans_projcs_geo.tif")
# par_dict = CreateDict(image_path, self.processinfo, out_path1, out_path2).calu_nature(start)
# model_xml_path = os.path.join(tem_folder, "creat_standard.meta.xml") # 输出xml路径
#
# id_min = 0
# id_max = 1000
# threshold_of_ndvi_min = 0
# threshold_of_ndvi_max = 1
# set_threshold = [id_max, id_min, threshold_of_ndvi_min, threshold_of_ndvi_max]
# CreateStadardXmlFile(xml_path, self.alg_xml_path, par_dict, set_threshold, model_xml_path).create_standard_xml()
#
2023-08-28 10:17:29 +00:00
SrcImagePath = self.__input_paras["DualPolarSAR"]['ParaValue']
paths = SrcImagePath.split(';')
SrcImageName=os.path.split(paths[0])[1].split('.tar.gz')[0]
# if len(paths) >= 2:
# for i in range(1, len(paths)):
# SrcImageName=SrcImageName+";"+os.path.split(paths[i])[1].split('.tar.gz')[0]
# meta_xml_path = self.__product_dic + EXE_NAME + "Product.meta.xml"
# CreateMetafile(self.__processing_paras['META'], self.alg_xml_path, model_xml_path, meta_xml_path).process(SrcImageName)
2023-08-28 10:17:29 +00:00
# 文件夹打包
model_path = "./product.xml"
meta_xml_path = os.path.join(self.__workspace_processing_path, SrcImageName + "-Roughness.meta.xml")
para_dict = CreateMetaDict(image_path, self.__processing_paras['Origin_META'], self.__workspace_processing_path,
out_path1, out_path2).calu_nature()
para_dict.update({"imageinfo_ProductName": "地表粗糙度"})
para_dict.update({"imageinfo_ProductIdentifier": "SurfaceRoughness"})
para_dict.update({"imageinfo_ProductLevel": "5A"})
para_dict.update({"ProductProductionInfo_BandSelection": "1,2"})
CreateProductXml(para_dict, model_path, meta_xml_path).create_standard_xml()
temp_folder = os.path.join(self.__workspace_path, EXE_NAME, 'Output')
out_xml = os.path.join(temp_folder, os.path.basename(meta_xml_path))
if os.path.exists(temp_folder) is False:
os.mkdir(temp_folder)
# CreateProductXml(para_dict, model_path, out_xml).create_standard_xml()
shutil.copy(meta_xml_path, out_xml)
2023-08-28 10:17:29 +00:00
file.make_targz(self.__out_para, self.__product_dic)
logger.info('process_handle success!')
logger.info('progress bar: 100%')
def del_temp_workspace(self):
"""
临时工作区
"""
if DEBUG is False:
path = self.__workspace_path + EXE_NAME + r'\Temporary'
if os.path.exists(path):
file.del_folder(path)
if __name__ == '__main__':
multiprocessing.freeze_support()
start = datetime.datetime.now()
try:
if len(sys.argv) < 2:
xml_path = 'SurfaceRoughness.xml'
else:
xml_path = sys.argv[1]
main_handler = MoistureMain(xml_path)
if main_handler.check_source() is False:
raise Exception('check_source() failed!')
if main_handler.preprocess_handle() is False:
raise Exception('preprocess_handle() failed!')
if main_handler.process_handle(start) is False:
raise Exception('process_handle() failed!')
logger.info('successful production of ' + EXE_NAME + ' products!')
except Exception:
logger.exception('run-time error!')
finally:
main_handler.del_temp_workspace()
2023-08-28 10:17:29 +00:00
pass
end = datetime.datetime.now()
msg = 'running use time: %s ' % (end - start)
logger.info(msg)