156 lines
4.6 KiB
Python
156 lines
4.6 KiB
Python
|
# -*- coding: UTF-8 -*-
|
|||
|
"""
|
|||
|
@Project :onestar
|
|||
|
@File :minimize.py
|
|||
|
@Contact:
|
|||
|
@Author :SHJ
|
|||
|
@Date :2021/11/24 15:46
|
|||
|
@Version :1.0.0
|
|||
|
"""
|
|||
|
from scipy.optimize import minimize
|
|||
|
import numpy as np
|
|||
|
from mpl_toolkits.mplot3d import Axes3D
|
|||
|
from matplotlib import pyplot as plt
|
|||
|
#目标函数:
|
|||
|
def func(args):
|
|||
|
fun = lambda x: 10 - x[0]**2 - x[1]**2
|
|||
|
return fun
|
|||
|
|
|||
|
#约束条件,包括等式约束和不等式约束
|
|||
|
def con(args):
|
|||
|
cons = ({'type': 'ineq', 'fun': lambda x: x[1]-x[0]**2},
|
|||
|
{'type': 'eq', 'fun': lambda x: x[0]+x[1]})
|
|||
|
return cons
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#画三维模式图
|
|||
|
def draw3D():
|
|||
|
fig = plt.figure()
|
|||
|
ax = Axes3D(fig)
|
|||
|
x_arange = np.arange(-5.0, 5.0)
|
|||
|
y_arange = np.arange(-5.0, 5.0)
|
|||
|
X, Y = np.meshgrid(x_arange, y_arange)
|
|||
|
Z1 = 10 - X**2 - Y**2
|
|||
|
Z2 = Y - X**2
|
|||
|
Z3 = X + Y
|
|||
|
plt.xlabel('x')
|
|||
|
plt.ylabel('y')
|
|||
|
ax.plot_surface(X, Y, Z1, rstride=1, cstride=1, cmap='rainbow')
|
|||
|
ax.plot_surface(X, Y, Z2, rstride=1, cstride=1, cmap='rainbow')
|
|||
|
ax.plot_surface(X, Y, Z3, rstride=1, cstride=1, cmap='rainbow')
|
|||
|
plt.show()
|
|||
|
#画等高线图
|
|||
|
|
|||
|
def drawContour():
|
|||
|
x_arange = np.linspace(-3.0, 4.0, 256)
|
|||
|
y_arange = np.linspace(-3.0, 4.0, 256)
|
|||
|
X, Y = np.meshgrid(x_arange, y_arange)
|
|||
|
Z1 = 10 - X**2 - Y**2
|
|||
|
Z2 = Y - X**2
|
|||
|
Z3 = X + Y
|
|||
|
plt.xlabel('x')
|
|||
|
plt.ylabel('y')
|
|||
|
plt.contourf(X, Y, Z1, 8, alpha=0.75, cmap='rainbow')
|
|||
|
plt.contourf(X, Y, Z2, 8, alpha=0.75, cmap='rainbow')
|
|||
|
plt.contourf(X, Y, Z3, 8, alpha=0.75, cmap='rainbow')
|
|||
|
C1 = plt.contour(X, Y, Z1, 8, colors='black')
|
|||
|
C2 = plt.contour(X, Y, Z2, 8, colors='blue')
|
|||
|
C3 = plt.contour(X, Y, Z3, 8, colors='red')
|
|||
|
plt.clabel(C1, inline=1, fontsize=10)
|
|||
|
plt.clabel(C2, inline=1, fontsize=10)
|
|||
|
plt.clabel(C3, inline=1, fontsize=10)
|
|||
|
plt.show()
|
|||
|
|
|||
|
# 目标函数:
|
|||
|
def func1(args):
|
|||
|
fun = lambda x: 10 - x[0] ** 2 - x[1] ** 2
|
|||
|
return fun
|
|||
|
|
|||
|
def samper():
|
|||
|
args = ()
|
|||
|
args1 = ()
|
|||
|
cons = con(args1)
|
|||
|
x0 = np.array((1.0, 2.0)) #设置初始值,初始值的设置很重要,很容易收敛到另外的极值点中,建议多试几个值
|
|||
|
#求解#
|
|||
|
res = minimize(func(args), x0, method='SLSQP', constraints=cons)
|
|||
|
#####
|
|||
|
print(res.fun)
|
|||
|
print(res.success)
|
|||
|
print(res.x)
|
|||
|
# draw3D()
|
|||
|
drawContour()
|
|||
|
|
|||
|
def samper1():
|
|||
|
fun = lambda x: np.abs(np.abs((0.7- (x[0] -0.49)**0.5)/(0.7- (x[0] +0.49)**0.5)) - 0.5*np.abs((0.7- (x[1] -0.49)**0.5)/(0.7- (x[1] +0.49)**0.5)))
|
|||
|
# fun = lambda x: np.abs(x[0]**2 -x[1]**2)
|
|||
|
x_min = 1
|
|||
|
x_max = 20
|
|||
|
cons = ({'type': 'ineq', 'fun': lambda x: x[0] - x_min},
|
|||
|
{'type': 'ineq', 'fun': lambda x: -x[0] + x_max},
|
|||
|
{'type': 'ineq', 'fun': lambda x: x[1] - x_min},
|
|||
|
{'type': 'ineq', 'fun': lambda x: -x[1] + x_max})
|
|||
|
bnds = ((0, 30), (0, 30))
|
|||
|
res = minimize(fun, (3, 3), method='SLSQP', bounds=bnds,constraints=cons)
|
|||
|
print("res::",res)
|
|||
|
|
|||
|
x_arange = np.linspace(0, 25, 256)
|
|||
|
y_arange = np.linspace(0, 25, 256)
|
|||
|
X, Y = np.meshgrid(x_arange, y_arange)
|
|||
|
Z1 = np.abs(np.abs((0.7- (X -0.49)**0.5)/(0.7- (X +0.49)**0.5)) - 0.5*np.abs((0.7- (Y -0.49)**0.5)/(0.7- (Y +0.49)**0.5)))
|
|||
|
# Z1 = np.abs(X**2 - Y**2)
|
|||
|
plt.xlabel('x')
|
|||
|
plt.ylabel('y')
|
|||
|
plt.contourf(X, Y, Z1, 8, alpha=0.75, cmap='rainbow')
|
|||
|
C1 = plt.contour(X, Y, Z1, 8, colors='black')
|
|||
|
plt.clabel(C1, inline=1, fontsize=10)
|
|||
|
plt.show()
|
|||
|
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
# samper1()
|
|||
|
s1 = 0.9414927
|
|||
|
c1 = 0.24188292
|
|||
|
s2 = 0.9414927
|
|||
|
c2 = 0.24188292
|
|||
|
t = 1.0
|
|||
|
x_min = 1
|
|||
|
x_max = 20
|
|||
|
bnds = ((x_min, x_max), (x_min, x_max))
|
|||
|
x_mid = 0.5 * (x_max - x_min)
|
|||
|
x = [9,8]
|
|||
|
a = (s2 - x[1]*(1 + s2))
|
|||
|
b = np.abs((x[1] - 1)*(s2 - x[1]*(1 + s2)) / (x[1] * c2 + (x[1] - s2) ** 0.5) ** 2)- t * np.abs((x[0] - 1)*(s1 - x[0]*(1 + s1)) / (x[0] * c1 + (x[0] - s1) ** 0.5) ** 2)
|
|||
|
|
|||
|
fun = lambda x: np.abs(
|
|||
|
np.abs((x[1] - 1)*(s2 - x[1]*(1 + s2)) / (x[1] * c2 + (x[1] - s2) ** 0.5) ** 2)
|
|||
|
- t * np.abs((x[0] - 1)*(s1 - x[0]*(1 + s1)) / (x[0] * c1 + (x[0] - s1) ** 0.5) ** 2)
|
|||
|
)
|
|||
|
res = minimize(fun, (x_mid, x_mid), method='SLSQP', bounds=bnds)
|
|||
|
print("res::", res)
|
|||
|
|
|||
|
x_arange = np.linspace(0, 25, 256)
|
|||
|
y_arange = np.linspace(0, 25, 256)
|
|||
|
X, Y = np.meshgrid(x_arange, y_arange)
|
|||
|
|
|||
|
Z1 = np.abs(
|
|||
|
np.abs((Y - 1)*(s2 - Y*(1 + s2)) / (Y * c2 + (Y - s2) ** 0.5) ** 2)
|
|||
|
- t * np.abs((X - 1)*(s1 - X*(1 + s1)) / (X * c1 + (X - s1) ** 0.5) ** 2)
|
|||
|
)
|
|||
|
# Z1 = np.abs(X**2 - Y**2)
|
|||
|
plt.xlabel('x')
|
|||
|
plt.ylabel('y')
|
|||
|
plt.contourf(X, Y, Z1, 8, alpha=0.75, cmap='rainbow')
|
|||
|
C1 = plt.contour(X, Y, Z1, 8, colors='black')
|
|||
|
plt.clabel(C1, inline=1, fontsize=10)
|
|||
|
plt.show()
|
|||
|
|
|||
|
|
|||
|
print('done')
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|