163 lines
7.5 KiB
Python
163 lines
7.5 KiB
Python
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import operator
|
||
|
import sys
|
||
|
from math import isinf
|
||
|
|
||
|
from .utils import report_progress
|
||
|
|
||
|
NUMBER_FMT = "{0:,.4f}" if sys.version_info[:2] > (2, 6) else "{0:.4f}"
|
||
|
ALIGNED_NUMBER_FMT = "{0:>{1},.4f}{2:<{3}}" if sys.version_info[:2] > (2, 6) else "{0:>{1}.4f}{2:<{3}}"
|
||
|
|
||
|
|
||
|
class TableResults(object):
|
||
|
def __init__(self, columns, sort, histogram, name_format, logger, scale_unit):
|
||
|
self.columns = columns
|
||
|
self.sort = sort
|
||
|
self.histogram = histogram
|
||
|
self.name_format = name_format
|
||
|
self.logger = logger
|
||
|
self.scale_unit = scale_unit
|
||
|
|
||
|
def display(self, tr, groups, progress_reporter=report_progress):
|
||
|
tr.write_line("")
|
||
|
tr.rewrite("Computing stats ...", black=True, bold=True)
|
||
|
for line, (group, benchmarks) in progress_reporter(groups, tr, "Computing stats ... group {pos}/{total}"):
|
||
|
benchmarks = sorted(benchmarks, key=operator.itemgetter(self.sort))
|
||
|
for bench in benchmarks:
|
||
|
bench["name"] = self.name_format(bench)
|
||
|
|
||
|
worst = {}
|
||
|
best = {}
|
||
|
solo = len(benchmarks) == 1
|
||
|
for line, prop in progress_reporter(("min", "max", "mean", "median", "iqr", "stddev", "ops"),
|
||
|
tr, "{line}: {value}", line=line):
|
||
|
if prop == "ops":
|
||
|
worst[prop] = min(bench[prop] for _, bench in progress_reporter(
|
||
|
benchmarks, tr, "{line} ({pos}/{total})", line=line))
|
||
|
best[prop] = max(bench[prop] for _, bench in progress_reporter(
|
||
|
benchmarks, tr, "{line} ({pos}/{total})", line=line))
|
||
|
else:
|
||
|
worst[prop] = max(bench[prop] for _, bench in progress_reporter(
|
||
|
benchmarks, tr, "{line} ({pos}/{total})", line=line))
|
||
|
best[prop] = min(bench[prop] for _, bench in progress_reporter(
|
||
|
benchmarks, tr, "{line} ({pos}/{total})", line=line))
|
||
|
for line, prop in progress_reporter(("outliers", "rounds", "iterations"), tr, "{line}: {value}", line=line):
|
||
|
worst[prop] = max(benchmark[prop] for _, benchmark in progress_reporter(
|
||
|
benchmarks, tr, "{line} ({pos}/{total})", line=line))
|
||
|
|
||
|
unit, adjustment = self.scale_unit(unit='seconds', benchmarks=benchmarks, best=best, worst=worst,
|
||
|
sort=self.sort)
|
||
|
ops_unit, ops_adjustment = self.scale_unit(unit='operations', benchmarks=benchmarks, best=best, worst=worst,
|
||
|
sort=self.sort)
|
||
|
labels = {
|
||
|
"name": "Name (time in {0}s)".format(unit),
|
||
|
"min": "Min",
|
||
|
"max": "Max",
|
||
|
"mean": "Mean",
|
||
|
"stddev": "StdDev",
|
||
|
"rounds": "Rounds",
|
||
|
"iterations": "Iterations",
|
||
|
"iqr": "IQR",
|
||
|
"median": "Median",
|
||
|
"outliers": "Outliers",
|
||
|
"ops": "OPS ({0}ops/s)".format(ops_unit) if ops_unit else "OPS",
|
||
|
}
|
||
|
widths = {
|
||
|
"name": 3 + max(len(labels["name"]), max(len(benchmark["name"]) for benchmark in benchmarks)),
|
||
|
"rounds": 2 + max(len(labels["rounds"]), len(str(worst["rounds"]))),
|
||
|
"iterations": 2 + max(len(labels["iterations"]), len(str(worst["iterations"]))),
|
||
|
"outliers": 2 + max(len(labels["outliers"]), len(str(worst["outliers"]))),
|
||
|
"ops": 2 + max(len(labels["ops"]), len(NUMBER_FMT.format(best["ops"] * ops_adjustment))),
|
||
|
}
|
||
|
for prop in "min", "max", "mean", "stddev", "median", "iqr":
|
||
|
widths[prop] = 2 + max(len(labels[prop]), max(
|
||
|
len(NUMBER_FMT.format(bench[prop] * adjustment))
|
||
|
for bench in benchmarks
|
||
|
))
|
||
|
|
||
|
rpadding = 0 if solo else 10
|
||
|
labels_line = labels["name"].ljust(widths["name"]) + "".join(
|
||
|
labels[prop].rjust(widths[prop]) + (
|
||
|
" " * rpadding
|
||
|
if prop not in ["outliers", "rounds", "iterations"]
|
||
|
else ""
|
||
|
)
|
||
|
for prop in self.columns
|
||
|
)
|
||
|
tr.rewrite("")
|
||
|
tr.write_line(
|
||
|
" benchmark{name}: {count} tests ".format(
|
||
|
count=len(benchmarks),
|
||
|
name="" if group is None else " {0!r}".format(group),
|
||
|
).center(len(labels_line), "-"),
|
||
|
yellow=True,
|
||
|
)
|
||
|
tr.write_line(labels_line)
|
||
|
tr.write_line("-" * len(labels_line), yellow=True)
|
||
|
|
||
|
for bench in benchmarks:
|
||
|
has_error = bench.get("has_error")
|
||
|
tr.write(bench["name"].ljust(widths["name"]), red=has_error, invert=has_error)
|
||
|
for prop in self.columns:
|
||
|
if prop in ("min", "max", "mean", "stddev", "median", "iqr"):
|
||
|
tr.write(
|
||
|
ALIGNED_NUMBER_FMT.format(
|
||
|
bench[prop] * adjustment,
|
||
|
widths[prop],
|
||
|
compute_baseline_scale(best[prop], bench[prop], rpadding),
|
||
|
rpadding
|
||
|
),
|
||
|
green=not solo and bench[prop] == best.get(prop),
|
||
|
red=not solo and bench[prop] == worst.get(prop),
|
||
|
bold=True,
|
||
|
)
|
||
|
elif prop == "ops":
|
||
|
tr.write(
|
||
|
ALIGNED_NUMBER_FMT.format(
|
||
|
bench[prop] * ops_adjustment,
|
||
|
widths[prop],
|
||
|
compute_baseline_scale(best[prop], bench[prop], rpadding),
|
||
|
rpadding
|
||
|
),
|
||
|
green=not solo and bench[prop] == best.get(prop),
|
||
|
red=not solo and bench[prop] == worst.get(prop),
|
||
|
bold=True,
|
||
|
)
|
||
|
else:
|
||
|
tr.write("{0:>{1}}".format(bench[prop], widths[prop]))
|
||
|
tr.write("\n")
|
||
|
tr.write_line("-" * len(labels_line), yellow=True)
|
||
|
tr.write_line("")
|
||
|
if self.histogram:
|
||
|
from .histogram import make_histogram
|
||
|
if len(benchmarks) > 75:
|
||
|
self.logger.warn("Group {0!r} has too many benchmarks. Only plotting 50 benchmarks.".format(group))
|
||
|
benchmarks = benchmarks[:75]
|
||
|
|
||
|
output_file = make_histogram(self.histogram, group, benchmarks, unit, adjustment)
|
||
|
|
||
|
self.logger.info("Generated histogram: {0}".format(output_file), bold=True)
|
||
|
|
||
|
tr.write_line("Legend:")
|
||
|
tr.write_line(" Outliers: 1 Standard Deviation from Mean; "
|
||
|
"1.5 IQR (InterQuartile Range) from 1st Quartile and 3rd Quartile.")
|
||
|
tr.write_line(" OPS: Operations Per Second, computed as 1 / Mean")
|
||
|
|
||
|
|
||
|
def compute_baseline_scale(baseline, value, width):
|
||
|
if not width:
|
||
|
return ""
|
||
|
if value == baseline:
|
||
|
return " (1.0)".ljust(width)
|
||
|
|
||
|
scale = abs(value / baseline) if baseline else float("inf")
|
||
|
if scale > 1000:
|
||
|
if isinf(scale):
|
||
|
return " (inf)".ljust(width)
|
||
|
else:
|
||
|
return " (>1000.0)".ljust(width)
|
||
|
else:
|
||
|
return " ({0:.2f})".format(scale).ljust(width)
|