# vim: set filetype=cfg: ##------------------------------- ISCE/topsStack ----------------------## ##-------------------------------- MintPy -----------------------------## ########## 1. Load Data (--load to exit after this step) ## load_data.py -H to check more details and example inputs. mintpy.load.processor = isce ##---------for ISCE only: mintpy.load.metaFile = isce_work_space/reference/IW*.xml mintpy.load.baselineDir = isce_work_space/baselines ##---------interferogram datasets: mintpy.load.unwFile = isce_work_space/merged/interferograms/*/filt_*.unw mintpy.load.corFile = isce_work_space/merged/interferograms/*/filt_*.cor mintpy.load.connCompFile = isce_work_space/merged/interferograms/*/filt_*.unw.conncomp ##---------geometry datasets: mintpy.load.demFile = isce_work_space/merged/geom_reference/hgt.rdr mintpy.load.lookupYFile = isce_work_space/merged/geom_reference/lat.rdr mintpy.load.lookupXFile = isce_work_space/merged/geom_reference/lon.rdr mintpy.load.incAngleFile = isce_work_space/merged/geom_reference/los.rdr mintpy.load.azAngleFile = isce_work_space/merged/geom_reference/los.rdr mintpy.load.shadowMaskFile = isce_work_space/merged/geom_reference/shadowMask.rdr ##---------multilook (optional): ## multilook while loading data with nearest interpolation, to reduce dataset size mintpy.load.ystep = auto #[int >= 1], auto for 1 - no multilooking mintpy.load.xstep = auto #[int >= 1], auto for 1 - no multilooking ##---------subset (optional): ## if both yx and lalo are specified, use lalo option unless a) no lookup file AND b) dataset is in radar coord mintpy.subset.yx = auto #[y0:y1,x0:x1 / no], auto for no mintpy.subset.lalo = auto #[S:N,W:E / no], auto for no ########## 2. modify_network ########## 3. reference_point mintpy.reference.maskFile = no #[filename / no], auto for maskConnComp.h5 mintpy.reference.minCoherence = auto #[0.0-1.0], auto for 0.85, minimum coherence for auto method ########## 4. correct_unwrap_error (optional) ## a. phase_closure - suitable for highly redundant network ## b. bridging - suitable for regions separated by narrow decorrelated features, e.g. rivers, narrow water bodies ## c. bridging+phase_closure - recommended when there is a small percentage of errors left after bridging mintpy.unwrapError.method = no #[bridging / phase_closure / bridging+phase_closure / no], auto for no mintpy.unwrapError.waterMaskFile = no #[waterMask.h5 / no], auto for waterMask.h5 or no [if not found] ########## 5. invert_network mintpy.networkInversion.waterMaskFile = no #[filename / no], auto for waterMask.h5 or no [if not found] mintpy.networkInversion.maskDataset = no #[coherence / connectComponent / offsetSNR / no], auto for no ## Temporal coherence is calculated and used to generate the mask as the reliability measure ## reference: Pepe & Lanari (2006, IEEE-TGRS) mintpy.networkInversion.shadowMask = auto #[yes / no], auto for yes [if shadowMask is in geometry file] or no. ########## 6. correct_troposphere (optional but recommended) mintpy.troposphericDelay.method = height_correlation #[pyaps / height_correlation / gacos / no], auto for pyaps ## Notes for height_correlation: ## Extra multilooking is applied to estimate the empirical phase/elevation ratio ONLY. ## For an dataset with 5 by 15 looks, looks=8 will generate phase with (5*8) by (15*8) looks ## to estimate the empirical parameter; then apply the correction to original phase (with 5 by 15 looks), ## if the phase/elevation correlation is larger than minCorrelation. mintpy.troposphericDelay.polyOrder = auto #[1 / 2 / 3], auto for 1 mintpy.troposphericDelay.looks = auto #[1-inf], auto for 8, extra multilooking num mintpy.troposphericDelay.minCorrelation = auto #[0.0-1.0], auto for 0 ########## 7. deramp (optional) ########## 8. correct_topography (optional but recommended) ########## 9.1 residual_RMS (root mean squares for noise evaluation) ########## 9.2 reference_date mintpy.reference.date = auto #[reference_date.txt / 20090214 / no], auto for reference_date.txt ########## 10. velocity ## Estimate linear velocity and its standard deviation from time-series ## and from tropospheric delay file if exists. ## reference: Fattahi and Amelung (2015, JGR) mintpy.velocity.excludeDate = auto #[exclude_date.txt / 20080520,20090817 / no], auto for exclude_date.txt mintpy.velocity.startDate = auto #[20070101 / no], auto for no mintpy.velocity.endDate = auto #[20101230 / no], auto for no ## Bootstrapping ## refernce: Efron and Tibshirani (1986, Stat. Sci.) mintpy.velocity.bootstrap = auto #[yes / no], auto for no, use bootstrap mintpy.velocity.bootstrapCount = auto #[int>1], auto for 400, number of iterations for bootstrapping