microproduct-l-sar/tool/algorithm/polsarpro/AHVToPolsarpro.py

553 lines
21 KiB
Python
Raw Normal View History

2024-01-03 01:42:21 +00:00
# -*- coding: UTF-8 -*-
"""
@Project:__init__.py
@File:AHVToPolsarpro.py
@Function:全极化影像转成polsarpro格式T3数据
@Contact:
@Author:SHJ
@Date:2021/9/18 16:44
@Version:1.0.0
"""
import os
import numpy as np
import glob
import struct
from tool.algorithm.algtools.MetaDataHandler import MetaDataHandler
2024-01-03 01:42:21 +00:00
from tool.algorithm.image.ImageHandle import ImageHandler
class AHVToPolsarpro:
"""
全极化影像转换为bin格式T3矩阵支持polsarpro处理
"""
def __init__(self, hh_hv_vh_vv_path_list=[]):
self._hh_hv_vh_vv_path_list = hh_hv_vh_vv_path_list
pass
@staticmethod
def __ahv_to_s2_veg(ahv_dir):
"""
全极化影像转S2矩阵
:param ahv_dir: 全极化影像文件夹路径
:return: 极化散射矩阵S2
"""
global s11
in_tif_paths = list(glob.glob(os.path.join(ahv_dir, '*.tif')))
in_tif_paths1 = list(glob.glob(os.path.join(ahv_dir, '*.tiff')))
in_tif_paths += in_tif_paths1
s11, s12, s21, s22 = None, None, None, None
flag_list = [0, 0, 0, 0]
for in_tif_path in in_tif_paths:
# 读取原始SAR影像
proj, geotrans, data = ImageHandler.read_img(in_tif_path)
# 获取极化类型
if '_HH' in os.path.basename(in_tif_path):
data_real = data[0, :, :]
data_imag = data[1, :, :]
s11 = data_real + 1j * data_imag
flag_list[0] = 1
elif '_HV' in os.path.basename(in_tif_path):
data_real = data[0, :, :]
data_imag = data[1, :, :]
s12 = data_real + 1j * data_imag
flag_list[1] = 1
elif '_VH' in os.path.basename(in_tif_path):
data_real = data[0, :, :]
data_imag = data[1, :, :]
s21 = data_real + 1j * data_imag
flag_list[2] = 1
elif '_VV' in os.path.basename(in_tif_path):
data_real = data[0, :, :]
data_imag = data[1, :, :]
s22 = data_real + 1j * data_imag
flag_list[3] = 1
else:
continue
if not flag_list == [1, 1, 1, 1]:
raise Exception('HH or HV or VH or VV is not in path :%s', ahv_dir)
return s11, s12, s21, s22
@staticmethod
def __ahv_to_s2_soil(ahv_dir):
"""
全极化影像转S2矩阵
:param ahv_dir: 全极化影像文件夹路径
:return: 极化散射矩阵S2
"""
global s11
in_tif_paths = list(glob.glob(os.path.join(ahv_dir, '*.tif')))
in_tif_paths1 = list(glob.glob(os.path.join(ahv_dir, '*.tiff')))
in_tif_paths += in_tif_paths1
s11, s12, s21, s22 = None, None, None, None
flag_list = [0, 0, 0, 0]
for in_tif_path in in_tif_paths:
# 读取原始SAR影像
proj, geotrans, data = ImageHandler.read_img(in_tif_path)
# 获取极化类型
if 'HH' in os.path.basename(in_tif_path):
data_real = data[0, :, :]
data_imag = data[1, :, :]
s11 = data_real + 1j * data_imag
flag_list[0] = 1
elif 'HV' in os.path.basename(in_tif_path):
data_real = data[0, :, :]
data_imag = data[1, :, :]
s12 = data_real + 1j * data_imag
flag_list[1] = 1
elif 'VH' in os.path.basename(in_tif_path):
data_real = data[0, :, :]
data_imag = data[1, :, :]
s21 = data_real + 1j * data_imag
flag_list[2] = 1
elif 'VV' in os.path.basename(in_tif_path):
data_real = data[0, :, :]
data_imag = data[1, :, :]
s22 = data_real + 1j * data_imag
flag_list[3] = 1
else:
continue
if not flag_list == [1, 1, 1, 1]:
raise Exception('HH or HV or VH or VV is not in path :%s', ahv_dir)
return s11, s12, s21, s22
@staticmethod
def __ahv_to_s2_list(ahv_path_list):
"""
全极化影像转S2矩阵
:param ahv_dir: 全极化影像文件夹路径
:return: 极化散射矩阵S2
"""
global s11
in_tif_paths = ahv_path_list
s11, s12, s21, s22 = None, None, None, None
flag_list = [0, 0, 0, 0]
for in_tif_path in in_tif_paths:
# 读取原始SAR影像
proj, geotrans, data = ImageHandler.read_img(in_tif_path)
# 获取极化类型
if 'HH' in os.path.basename(in_tif_path):
data_real = data[0, :, :]
data_imag = data[1, :, :]
s11 = data_real + 1j * data_imag
flag_list[0] = 1
elif 'HV' in os.path.basename(in_tif_path):
data_real = data[0, :, :]
data_imag = data[1, :, :]
s12 = data_real + 1j * data_imag
flag_list[1] = 1
elif 'VH' in os.path.basename(in_tif_path):
data_real = data[0, :, :]
data_imag = data[1, :, :]
s21 = data_real + 1j * data_imag
flag_list[2] = 1
elif 'VV' in os.path.basename(in_tif_path):
data_real = data[0, :, :]
data_imag = data[1, :, :]
s22 = data_real + 1j * data_imag
flag_list[3] = 1
else:
continue
if not flag_list == [1, 1, 1, 1]:
raise Exception('HH or HV or VH or VV is not in path')
return s11, s12, s21, s22
@staticmethod
def __ahv_to_s2_list_2(hh_hv_vh_vv_path_list):
"""
全极化影像转S2矩阵
:param ahv_dir: 全极化影像文件夹路径
:return: 极化散射矩阵S2
"""
global s11
in_tif_paths = hh_hv_vh_vv_path_list
s11, s12, s21, s22 = None, None, None, None
flag_list = [0, 0, 0, 0]
for in_tif_path, n in zip(in_tif_paths, range(len(in_tif_paths))):
# 读取原始SAR影像
proj, geotrans, data = ImageHandler.read_img(in_tif_path)
# 获取极化类型
if n == 0:
data_real = data[0, :, :]
data_imag = data[1, :, :]
s11 = data_real + 1j * data_imag
flag_list[0] = 1
elif n == 1:
data_real = data[0, :, :]
data_imag = data[1, :, :]
s12 = data_real + 1j * data_imag
flag_list[1] = 1
elif n == 2:
data_real = data[0, :, :]
data_imag = data[1, :, :]
s21 = data_real + 1j * data_imag
flag_list[2] = 1
elif n == 3:
data_real = data[0, :, :]
data_imag = data[1, :, :]
s22 = data_real + 1j * data_imag
flag_list[3] = 1
else:
continue
if not flag_list == [1, 1, 1, 1]:
raise Exception('HH or HV or VH or VV is not in path')
return s11, s12, s21, s22
@staticmethod
def __s2_to_t3(s11, s12, s21, s22):
"""
S2矩阵转T3矩阵
:param s11: HH极化数据
:param s12: HV极化数据
:param s21: VH极化数据
:param s22: VV极化数据
:return: 极化相干矩阵T3
"""
HH = s11
HV = s12
VH = s21
VV = s22
t11 = (np.abs(HH + VV)) ** 2 / 2
t12 = (HH + VV) * np.conj(HH - VV) / 2
t13 = (HH + VV) * np.conj(HV + VH)
t21 = (HH - VV) * np.conj(HH + VV) / 2
t22 = np.abs(HH - VV) ** 2 / 2
t23 = (HH - VV) * np.conj(HV + VH)
t31 = (HV + VH) * np.conj(HH + VV)
t32 = (HV + VH) * np.conj(HH - VV)
t33 = 2 * np.abs(HV + VH) ** 2
return t11, t12, t13, t21, t22, t23, t31, t32, t33
def __t3_to_polsarpro_t3(self, out_dir, t11, t12, t13, t22, t23, t33):
"""
T3矩阵转bin格式支持 polsarpro处理
:param out_dir: 输出的文件夹路径
:param t11:
:param t12:
:param t13:
:param t22:
:param t23:
:param t33:
:return: bin格式矩阵T3和头文件
"""
if not os.path.exists(out_dir):
os.makedirs(out_dir)
rows = t11.shape[0]
cols = t11.shape[1]
bins_dict = {
'T11.bin': t11,
'T12_real.bin': t12.real,
'T12_imag.bin': t12.imag,
'T13_real.bin': t13.real,
'T13_imag.bin': t13.imag,
'T22.bin': t22,
'T23_real.bin': t23.real,
'T23_imag.bin': t23.imag,
'T33.bin': t33}
for name, data in bins_dict.items():
bin_path = os.path.join(out_dir, name)
self.__write_img_bin(data, bin_path) # todo 修改T3阵保存方式
# data.tofile(bin_path)
out_hdr_path = bin_path + '.hdr'
self.__write_bin_hdr(out_hdr_path, bin_path, rows, cols)
self.__write_config_file(out_dir, rows, cols)
def rows(self):
"""获取影像行数"""
return self._rows
def cols(self):
"""获取影像列数"""
return self._cols
def __write_img_bin(self, im, file_path):
"""
写入影像到bin文件中保存为float32类型
:param im : 影像矩阵数据暂支持单通道影像数据
:param file_path: bin文件的完整路径
"""
with open(file_path, 'wb') as f:
self._rows = im.shape[0]
self._cols = im.shape[1]
for row in range(self._rows):
im_bin = struct.pack("f" * self._cols, *np.reshape(im[row, :], (self._cols, 1), order='F'))
f.write(im_bin)
f.close()
@staticmethod
def __write_bin_hdr(out_hdr_path, bin_path, rows, cols):
"""
写入影像的头文件
:param out_hdr_path : 头文件的路径
:param bin_path: bin文件的路径
:param rows: 影像的行数
:param cols: 影像的列数
"""
h1 = 'ENVI'
h2 = 'description = {'
h3 = 'File Imported into ENVI. }'
h4 = 'samples = ' + str(cols) # 列
h5 = 'lines = ' + str(rows) # 行
h6 = 'bands = 1 ' # 波段数
h7 = 'header offset = 0'
h8 = 'file type = ENVI Standard'
h9 = 'data type = 4' # 数据格式
h10 = 'interleave = bsq' # 存储格式
h11 = 'sensor type = Unknown'
h12 = 'byte order = 0'
h13 = 'band names = {'
h14 = bin_path + '}'
# h = [h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11, h12, h13, h14]
# doc = open(out_hdr_path, 'w')
# for i in range(0, 14):
# print(h[i], end='', file=doc)
# print('\n', end='', file=doc)
h = [h1, h4, h5, h6, h7, h8, h9, h10, h12]
doc = open(out_hdr_path, 'w')
for i in range(0, 9):
print(h[i], end='', file=doc)
print('\n', end='', file=doc)
doc.close()
@staticmethod
def __write_config_file(out_config_dir, rows, cols):
"""
写入polsarpro配置文件
:param out_config_dir : 配置文件路径
:param rows: 影像的行数
:param cols: 影像的列数
"""
h1 = 'Nrow'
h2 = str(rows)
h3 = '---------'
h4 = 'Ncol'
h5 = str(cols)
h6 = '---------'
h7 = 'PolarCase'
h8 = 'monostatic'
h9 = '---------'
h10 = 'PolarType'
h11 = 'full'
h = [h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11]
out_config_path = os.path.join(out_config_dir, 'config.txt')
doc = open(out_config_path, 'w')
for i in range(0, 11):
print(h[i], end='', file=doc)
print('\n', end='', file=doc)
doc.close()
def incidence_tif2bin(self, incidence_file, out_path):
if not os.path.exists(out_path):
os.mkdir(out_path)
incidence_bin = os.path.join(out_path, 'incidence.bin')
data = ImageHandler().get_data(incidence_file)
rows = data.shape[0]
cols = data.shape[1]
self.__write_img_bin(data, incidence_bin)
if not os.path.exists(incidence_bin):
raise Exception('incidence to bin failed')
out_hdr_path = incidence_bin + '.hdr'
self.__write_bin_hdr(out_hdr_path, incidence_bin, rows, cols)
return incidence_bin
def ahv_to_polsarpro_t3_veg(self, out_file_dir, in_ahv_dir=''):
if self._hh_hv_vh_vv_path_list == [] :
s11, s12, s21, s22 = self.__ahv_to_s2_veg(in_ahv_dir)
else:
s11, s12, s21, s22 = self.__ahv_to_s2_list_2(self._hh_hv_vh_vv_path_list)
t11, t12, t13, t21, t22, t23, t31, t32, t33 = self.__s2_to_t3(
s11, s12, s21, s22)
self.__t3_to_polsarpro_t3(out_file_dir, t11, t12, t13, t22, t23, t33)
def ahv_to_polsarpro_t3_soil(self, out_file_dir, in_ahv_dir=''):
if self._hh_hv_vh_vv_path_list == [] :
s11, s12, s21, s22 = self.__ahv_to_s2_soil(in_ahv_dir)
else:
s11, s12, s21, s22 = self.__ahv_to_s2_list_2(self._hh_hv_vh_vv_path_list)
t11, t12, t13, t21, t22, t23, t31, t32, t33 = self.__s2_to_t3(
s11, s12, s21, s22)
self.__t3_to_polsarpro_t3(out_file_dir, t11, t12, t13, t22, t23, t33)
def calibration(self, calibration_value, in_ahv_dir='', name=''):
if name == '':
out_dir = os.path.join(in_ahv_dir, 'calibration')
else:
out_dir = os.path.join(in_ahv_dir, name, 'calibration')
flag_list = [0, 0, 0, 0]
if self._hh_hv_vh_vv_path_list == []: # 地表覆盖、土壤盐碱度
in_tif_paths = list(glob.glob(os.path.join(in_ahv_dir, '*.tif')))
in_tif_paths1 = list(glob.glob(os.path.join(in_ahv_dir, '*.tiff')))
in_tif_paths += in_tif_paths1
for in_tif_path in in_tif_paths:
# 读取原始SAR影像
proj, geotrans, data = ImageHandler.read_img(in_tif_path)
name = os.path.basename(in_tif_path)
data_new = np.zeros(data.shape)
# 获取极化类型
if 'HH' in os.path.basename(in_tif_path):
data_new[0, :, :] = data[0, :, :] * calibration_value[0]
data_new[1, :, :] = data[1, :, :] * calibration_value[0]
ImageHandler.write_img(os.path.join(out_dir, name), proj, geotrans, data_new)
flag_list[0] = 1
elif 'HV' in os.path.basename(in_tif_path):
data_new[0, :, :] = data[0, :, :] * calibration_value[1]
data_new[1, :, :] = data[1, :, :] * calibration_value[1]
ImageHandler.write_img(os.path.join(out_dir, name), proj, geotrans, data_new)
flag_list[1] = 1
elif 'VH' in os.path.basename(in_tif_path):
data_new[0, :, :] = data[0, :, :] * calibration_value[2]
data_new[1, :, :] = data[1, :, :] * calibration_value[2]
ImageHandler.write_img(os.path.join(out_dir, name), proj, geotrans, data_new)
flag_list[2] = 1
elif 'VV' in os.path.basename(in_tif_path):
data_new[0, :, :] = data[0, :, :] * calibration_value[3]
data_new[1, :, :] = data[1, :, :] * calibration_value[3]
ImageHandler.write_img(os.path.join(out_dir, name), proj, geotrans, data_new)
flag_list[3] = 1
if not flag_list == [1, 1, 1, 1]:
raise Exception('calibration error! ')
else:
for in_tif_path in self._hh_hv_vh_vv_path_list: # 植被物候
# 读取原始SAR影像
proj, geotrans, data = ImageHandler.read_img(in_tif_path)
name = os.path.basename(in_tif_path)
data_new = np.zeros(data.shape)
# 获取极化类型
if '_HH' in os.path.basename(in_tif_path):
data_new[0, :, :] = data[0, :, :] * calibration_value[0]
data_new[1, :, :] = data[1, :, :] * calibration_value[0]
ImageHandler.write_img(os.path.join(out_dir, name), proj, geotrans, data_new)
flag_list[0] = 1
elif '_HV' in os.path.basename(in_tif_path):
data_new[0, :, :] = data[0, :, :] * calibration_value[1]
data_new[1, :, :] = data[1, :, :] * calibration_value[1]
ImageHandler.write_img(os.path.join(out_dir, name), proj, geotrans, data_new)
flag_list[1] = 1
elif '_VH' in os.path.basename(in_tif_path):
data_new[0, :, :] = data[0, :, :] * calibration_value[2]
data_new[1, :, :] = data[1, :, :] * calibration_value[2]
ImageHandler.write_img(os.path.join(out_dir, name), proj, geotrans, data_new)
flag_list[2] = 1
elif '_VV' in os.path.basename(in_tif_path):
data_new[0, :, :] = data[0, :, :] * calibration_value[3]
data_new[1, :, :] = data[1, :, :] * calibration_value[3]
ImageHandler.write_img(os.path.join(out_dir, name), proj, geotrans, data_new)
flag_list[3] = 1
if not flag_list == [1, 1, 1, 1]:
raise Exception('calibration error! ')
self._hh_hv_vh_vv_path_list = []
return out_dir
@staticmethod
def sar_backscattering_sigma(in_sar_tif, meta_file_path, out_sar_tif, replece_VV=False, is_DB=True):
# 读取原始SAR影像
proj, geotrans, in_data = ImageHandler.read_img(in_sar_tif)
# 计算强度信息
I = np.array(in_data[0], dtype="float32")
Q = np.array(in_data[1], dtype="float32")
where_9999_0 = np.where(I == -9999)
where_9999_1 = np.where(Q == -9999)
I[where_9999_0] = 1.0
Q[where_9999_1] = 1.0
I2 = np.square(I)
Q2 = np.square(Q)
intensity_arr = I2 + Q2
# 获取极化类型
if 'HH' in os.path.basename(in_sar_tif):
polarization = 'HH'
elif 'HV' in os.path.basename(in_sar_tif):
polarization = 'HV'
elif 'VH' in os.path.basename(in_sar_tif):
polarization = 'VH'
elif 'VV' in os.path.basename(in_sar_tif):
polarization = 'VV'
if replece_VV:
polarization = 'HV' # 土壤水分算法中可能会用HV替换VV
elif 'DH' in os.path.basename(in_sar_tif):
polarization = 'HH'
else:
raise Exception('there are not HH、HV、VH、VV in path:', in_sar_tif)
# 获取参数
QualifyValue = MetaDataHandler.get_QualifyValue(meta_file_path, polarization)
Kdb = MetaDataHandler.get_Kdb(meta_file_path, polarization)
# 计算后向散射系数
# 对数形式
coef_arr = 10 * (np.log10(intensity_arr * ((QualifyValue / 32767) ** 2))) - Kdb
coef_arr[np.isnan(coef_arr)] = -9999
coef_arr[np.isinf(coef_arr)] = -9999
coef_arr[where_9999_0] = -9999
coef_arr[where_9999_1] = -9999
## 输出的SAR后向散射系数产品
# ImageHandler.write_img(out_sar_tif, proj, geotrans, coef_arr, 0)
tif_array = np.power(10.0, coef_arr / 10.0) # dB --> 线性值 后向散射系数
tif_array[np.isnan(tif_array)] = 0
tif_array[np.isinf(tif_array)] = 0
tif_array[where_9999_0] = 0
tif_array[where_9999_1] = 0
ImageHandler.write_img(out_sar_tif, proj, geotrans, tif_array, 0)
return True
2024-01-03 01:42:21 +00:00
if __name__ == '__main__':
#实例1
# atp = AHVToPolsarpro()
# ahv_path = 'D:\\DATA\\GAOFEN3\\2-GF3_MYN_WAV_020086_E107.2_N27.6_20200603_L1A_AHV_L10004843087\\'
# # ahv_path = 'D:\\DATA\\GAOFEN3\\2598957_Paris\\'
# out_file_path = 'D:\\bintest0923\\'
# atp.ahv_to_polsarpro_t3(out_file_path, ahv_path)
# # 极化分解得到T3矩阵
# atp = AHVToPolsarpro()
# ahv_path = r"I:\MicroWorkspace\product\C-SAR\SoilSalinity\GF3B_MYC_QPSI_003581_E120.6_N31.3_20220729_L1A_AHV_L10000073024_RPC"
# t3_path = ahv_path + 'psp_t3\\'
# atp.ahv_to_polsarpro_t3(t3_path, ahv_path)
#实例2
# dir = r'D:\MicroWorkspace\product\C-SAR\VegetationPhenology\Temporary\preprocessed/'
# path_list = [dir +'GF3_SAY_QPSI_011444_E118.9_N31.4_20181012_L1A_AHV_L10003515422_RPC_HH_preprocessed.tif',
# dir +'GF3_SAY_QPSI_011444_E118.9_N31.4_20181012_L1A_AHV_L10003515422_RPC_HV_preprocessed.tif',
# dir +'GF3_SAY_QPSI_011444_E118.9_N31.4_20181012_L1A_AHV_L10003515422_RPC_VH_preprocessed.tif',
# dir +'GF3_SAY_QPSI_011444_E118.9_N31.4_20181012_L1A_AHV_L10003515422_RPC_VV_preprocessed.tif']
#
#
# atp = AHVToPolsarpro(path_list)
# atp.ahv_to_polsarpro_t3(r'D:\MicroWorkspace\product\C-SAR\VegetationPhenology\Temporary\processing\GF3_SAY_QPSI_011444_E118.9_N31.4_20181012_L1A_AHV_L10003515422_RPC/t3')
print("done")