microproduct-l-sar/dem-L-SAR/view.py

1707 lines
71 KiB
Python
Raw Permalink Normal View History

2024-01-03 01:42:21 +00:00
#!/usr/bin/env python3
############################################################
# Program is part of MintPy #
# Copyright (c) 2013, Zhang Yunjun, Heresh Fattahi #
# Author: Zhang Yunjun, Heresh Fattahi, 2013 #
############################################################
# Recommend import:
# from mintpy import view
import os
import sys
import re
import argparse
import datetime as dt
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="matplotlib")
import cartopy.crs as ccrs
from mintpy.objects import (
giantIfgramStack,
geometryDatasetNames,
ifgramDatasetNames,
ifgramStack,
timeseriesKeyNames,
timeseries,
)
from mintpy.objects.gps import GPS
from mintpy.utils import (
arg_group,
ptime,
readfile,
utils as ut,
plot as pp,
)
from mintpy.multilook import multilook_data
from mintpy import subset, version
##################################################################################################
EXAMPLE = """example:
view.py velocity.h5
view.py velocity.h5 velocity --wrap --wrap-range -2 2 -c cmy --lalo-label
view.py velocity.h5 --ref-yx 210 566 #change reference pixel for display
view.py velocity.h5 --sub-lat 31.05 31.10 --sub-lon 130.05 130.10 #subset in lalo / yx
view.py timeseries.h5
view.py timeseries.h5 -m no #do not use auto mask
view.py timeseries.h5 --ref-date 20101120 #change reference date
view.py timeseries.h5 --ex drop_date.txt #exclude dates to plot
view.py timeseries.h5 '*2017*' '*2018*' #all acquisitions in 2017 and 2018
view.py timeseries.h5 20200616_20200908 #reconstruct interferogram on the fly
view.py ifgramStack.h5 coherence
view.py ifgramStack.h5 unwrapPhase- #unwrapPhase only in the presence of unwrapPhase_bridging
view.py ifgramStack.h5 -n 6 #the 6th slice
view.py ifgramStack.h5 20171010_20171115 #all data related with 20171010_20171115
view.py ifgramStack.h5 'coherence*20171010*' #all coherence related with 20171010
view.py ifgramStack.h5 unwrapPhase-20070927_20100217 --zero-mask --wrap #wrapped phase
view.py ifgramStack.h5 unwrapPhase-20070927_20100217 --mask ifgramStack.h5 #mask using connected components
# GPS (for one subplot in geo-coordinates only)
view.py geo_velocity_msk.h5 velocity --show-gps --gps-label #show locations of available GPS
view.py geo_velocity_msk.h5 velocity --show-gps --gps-comp enu2los --ref-gps GV01
view.py geo_timeseries_ERA5_ramp_demErr.h5 20180619 --ref-date 20141213 --show-gps --gps-comp enu2los --ref-gps GV01
# Save and Output
view.py velocity.h5 --save
view.py velocity.h5 --nodisplay
view.py geo_velocity.h5 velocity --nowhitespace
"""
PLOT_TEMPLATE = """Plot Setting:
plot.name = 'Yunjun et al., 2016, AGU, Fig 4f'
plot.type = LOS_VELOCITY
plot.startDate =
plot.endDate =
plot.displayUnit = cm/yr
plot.displayMin = -2
plot.displayMax = 2
plot.colormap = jet
plot.subset.lalo = 33.05:33.15, 131.15:131.27
plot.seed.lalo = 33.0651, 131.2076
"""
def create_parser():
parser = argparse.ArgumentParser(description='Plot InSAR Product in 2D',
formatter_class=argparse.RawTextHelpFormatter,
epilog=EXAMPLE)
infile = parser.add_argument_group('Input File', 'File/Dataset to display')
infile.add_argument('file', type=str, help='file for display')
infile.add_argument('dset', type=str, nargs='*', default=[],
help='optional - dataset(s) to display (default: %(default)s).')
infile.add_argument('-n', '--dset-num', dest='dsetNumList', metavar='NUM', type=int, nargs='*', default=[],
help='optional - order number of date/dataset(s) to display (default: %(default)s).')
infile.add_argument('--nosearch', dest='search_dset', action='store_false',
help='Disable glob search for input dset.')
infile.add_argument('--ex', '--exclude', dest='exDsetList', metavar='Dset', nargs='*', default=[],
help='dates will not be displayed (default: %(default)s).')
parser.add_argument('--show-kept','--show-kept-ifgram', dest='plot_drop_ifgram', action='store_false',
help='display kept interferograms only, without dropped interferograms')
parser.add_argument('--plot-setting', dest='disp_setting_file',
help='Template file with plot setting.\n'+PLOT_TEMPLATE)
parser.add_argument('--noverbose', dest='print_msg', action='store_false',
help='Disable the verbose message printing (default: %(default)s).')
parser.add_argument('--math', dest='math_operation', choices={'square','sqrt','reverse','inverse'},
help='Apply the math operation before displaying [for single subplot ONLY].\n'
'E.g. plot the std. dev. of the variance file.\n'
' square = x^2\n'
' sqrt = x^1/2\n'
' reverse = x * -1\n'
' inverse = 1 / x')
parser = arg_group.add_data_disp_argument(parser)
parser = arg_group.add_dem_argument(parser)
parser = arg_group.add_figure_argument(parser)
parser = arg_group.add_gps_argument(parser)
parser = arg_group.add_mask_argument(parser)
parser = arg_group.add_map_argument(parser)
parser = arg_group.add_memory_argument(parser)
parser = arg_group.add_point_argument(parser)
parser = arg_group.add_reference_argument(parser)
parser = arg_group.add_save_argument(parser)
parser = arg_group.add_subset_argument(parser)
return parser
def cmd_line_parse(iargs=None):
"""Command line parser."""
parser = create_parser()
inps = parser.parse_args(args=iargs)
# check invalid file inputs
for key in ['file','dem_file','mask_file','pts_file']:
fname = vars(inps)[key]
if fname not in [None, 'no'] and not os.path.isfile(fname):
raise FileNotFoundError('input {} file {} NOT exist!'.format(key, fname))
# --exclude
if inps.exDsetList:
inps.exDsetList = ptime.read_date_list(inps.exDsetList)
# If output flie name assigned or figure shown is turned off, turn on the figure save
if inps.outfile or not inps.disp_fig:
inps.save_fig = True
if inps.lalo_step:
inps.lalo_label = True
if inps.zero_mask:
# turn OFF default mask file detection for --zero-mask
# extra manual mask file is still supported
if not inps.mask_file:
inps.mask_file = 'no'
if not inps.disp_whitespace:
inps.disp_axis = False
inps.disp_title = False
inps.disp_cbar = False
if not inps.disp_axis:
inps.disp_tick = False
if inps.flip_lr or inps.flip_ud:
inps.auto_flip = False
# check geo-only options for files in radar-coordinates
geo_opt_names = ['--coord', '--show-gps', '--coastline', '--lalo-label', '--lalo-step', '--scalebar']
geo_opt_names = list(set(geo_opt_names) & set(iargs))
if geo_opt_names and 'Y_FIRST' not in readfile.read_attribute(inps.file).keys():
for opt_name in geo_opt_names:
print(f'WARNING: {opt_name} is NOT supported for files in radar-coordinate, ignore it and continue.')
# verbose print using --noverbose option
global vprint
vprint = print if inps.print_msg else lambda *args, **kwargs: None
# print view.py command line if --noverbose (used in smallbaselineApp.py)
if not inps.print_msg:
print('view.py', ' '.join(iargs))
if inps.disp_setting_file:
inps = update_inps_with_display_setting_file(inps, inps.disp_setting_file)
# Backend setting
if not inps.disp_fig:
plt.switch_backend('Agg')
return inps
def run_or_skip(inps):
vprint('update mode: ON')
flag = 'skip'
# get existed output file names
outfiles = []
for fname in inps.outfile:
fnames = [fname, os.path.join(os.path.dirname(fname), 'pic', os.path.basename(fname))]
fnames = [i for i in fnames if os.path.isfile(i)]
if len(fnames) > 0:
outfiles.append(fnames[0])
else:
flag = 'run'
if flag == 'skip':
ti = os.path.getmtime(inps.file)
to = min([os.path.getmtime(i) for i in outfiles])
if ti > to:
flag = 'run'
else:
vprint('{} exist and are newer than input file: {} --> skip.'.format(outfiles, inps.file))
return flag
##################################################################################################
def update_inps_with_display_setting_file(inps, disp_set_file):
"""Update inps using values from display setting file"""
disp_set_dict = readfile.read_template(disp_set_file)
if not inps.disp_unit and 'plot.displayUnit' in disp_set_dict.keys():
inps.disp_unit = disp_set_dict['plot.displayUnit']
if not inps.disp_min and 'plot.displayMin' in disp_set_dict.keys():
inps.disp_min = float(disp_set_dict['plot.displayMin'])
if not inps.disp_max and 'plot.displayMax' in disp_set_dict.keys():
inps.disp_max = float(disp_set_dict['plot.displayMax'])
if not inps.colormap and 'plot.colormap' in disp_set_dict.keys():
inps.colormap = disp_set_dict['plot.colormap']
if not inps.subset_lat and 'plot.subset.lalo' in disp_set_dict.keys():
inps.subset_lat = [float(n) for n in disp_set_dict['plot.subset.lalo'].replace(',', ' ').split()[0:2]]
if not inps.subset_lon and 'plot.subset.lalo' in disp_set_dict.keys():
inps.subset_lon = [float(n) for n in disp_set_dict['plot.subset.lalo'].replace(',', ' ').split()[2:4]]
if not inps.ref_lalo and 'plot.seed.lalo' in disp_set_dict.keys():
inps.ref_lalo = [float(n) for n in disp_set_dict['plot.referenceLalo'].replace(',', ' ').split()]
return inps
def update_inps_with_file_metadata(inps, metadata):
# Subset
# Convert subset input into bounding box in radar / geo coordinate
# geo_box = None if atr is not geocoded.
coord = ut.coordinate(metadata)
inps.pix_box, inps.geo_box = subset.subset_input_dict2box(vars(inps), metadata)
inps.pix_box = coord.check_box_within_data_coverage(inps.pix_box)
inps.geo_box = coord.box_pixel2geo(inps.pix_box)
# Out message
inps.data_box = (0, 0, inps.width, inps.length)
vprint('data coverage in y/x: '+str(inps.data_box))
vprint('subset coverage in y/x: '+str(inps.pix_box))
vprint('data coverage in lat/lon: '+str(coord.box_pixel2geo(inps.data_box)))
vprint('subset coverage in lat/lon: '+str(inps.geo_box))
vprint('------------------------------------------------------------------------')
# DEM contour display
if max(inps.pix_box[3] - inps.pix_box[1],
inps.pix_box[2] - inps.pix_box[0]) > 2e3:
inps.disp_dem_contour = False
if inps.dem_file:
vprint('area exceed 2000 pixels, turn off default DEM contour display')
# Multilook, if too many subplots in one figure for less memory and faster speed
if inps.multilook_num > 1:
inps.multilook = True
# Colormap
inps.colormap = pp.auto_colormap_name(metadata, inps.colormap,
datasetName=inps.dset[0],
print_msg=inps.print_msg)
# Reference Point
# Convert ref_lalo if existed, to ref_yx, and use ref_yx for the following
# ref_yx is referenced to input data coverage, not subseted area for display
if inps.ref_lalo:
vprint('input reference point in lat/lon: {}'.format(inps.ref_lalo))
if not inps.geo_box and not coord.lookup_file:
print('WARNING: --ref-lalo is NOT supported when 1) file is radar-coded AND 2) no lookup table file found')
print(' --> ignore the --ref-lalo input and continue.')
inps.ref_lalo = []
else:
inps.ref_yx = coord.geo2radar(inps.ref_lalo[0], inps.ref_lalo[1])
vprint('input reference point in y /x : {}'.format(inps.ref_yx))
# ref_lalo
if inps.ref_yx and inps.geo_box:
inps.ref_lalo = [coord.yx2lalo(inps.ref_yx[0], coord_type='y'),
coord.yx2lalo(inps.ref_yx[1], coord_type='x')]
elif 'REF_LAT' in metadata.keys():
inps.ref_lalo = [float(metadata['REF_LAT']),
float(metadata['REF_LON'])]
else:
inps.ref_lalo = None
# Points of interest
inps = pp.read_pts2inps(inps, coord)
# Unit and Wrap
inps.disp_unit, inps.wrap = pp.check_disp_unit_and_wrap(metadata,
disp_unit=inps.disp_unit,
wrap=inps.wrap,
wrap_range=inps.wrap_range,
print_msg=inps.print_msg)
# Map Projection via cartopy
# cartopy requires that:
# 1. file is geocoded AND
# 2. file coordinates are in the unit of degrees / meters AND
# 3. set to display in geo-coordinates
# use cartopy (by initiating inps.map_proj_obj) ONLY IF:
# 1. show fancy lat/lon label via --lalo-label OR
# 2. show coastline via --coastline
inps.map_proj_obj = None
inps.coord_unit = metadata.get('Y_UNIT', 'degrees').lower()
if (inps.geo_box
and inps.coord_unit.startswith(('deg', 'meter'))
and inps.fig_coord == 'geo'
and (inps.lalo_label or inps.coastline)):
# get projection name from the data coord unit
# https://scitools.org.uk/cartopy/docs/latest/crs/projections.html
msg = 'initiate cartopy map projection: '
if inps.coord_unit.startswith('deg'):
inps.map_proj_obj = ccrs.PlateCarree()
vprint(msg + 'PlateCarree')
elif inps.coord_unit.startswith('meter'):
if 'UTM_ZONE' in metadata.keys():
utm_zone = metadata['UTM_ZONE']
inps.map_proj_obj = ccrs.UTM(utm_zone)
vprint(msg + f'UTM zone {utm_zone}')
# check --lalo-label (works for PlateCarree only)
if inps.lalo_label:
raise ValueError('--lalo-label is NOT supported for projection: UTM')
else:
print('WARNING: Un-recognized coordinate unit: {}'.format(inps.coord_unit))
print(' Switch to the native Y/X and continue to plot')
inps.fig_coord = 'radar'
# Min / Max - Display
if not inps.vlim:
if (any(i in inps.key.lower() for i in ['coherence', '.cor'])
or (inps.key == 'ifgramStack' and inps.dset[0].split('-')[0] in ['coherence'])
or inps.dset[0] == 'cmask'):
inps.vlim = [0.0, 1.0]
elif inps.key in ['.int'] or inps.wrap:
inps.vlim = inps.wrap_range
# Transparency - Alpha
if not inps.transparency:
# Auto adjust transparency value when showing shaded relief DEM
if inps.dem_file and inps.disp_dem_shade:
inps.transparency = 0.8
else:
inps.transparency = 1.0
# Flip Left-Right / Up-Down
if inps.auto_flip:
inps.flip_lr, inps.flip_ud = pp.auto_flip_direction(metadata, print_msg=inps.print_msg)
# Figure Title
if not inps.fig_title:
inps.fig_title = pp.auto_figure_title(metadata['FILE_PATH'],
datasetNames=inps.dset,
inps_dict=vars(inps))
vprint('figure title: '+inps.fig_title)
# Figure output file name
if not inps.outfile:
inps.outfile = ['{}{}'.format(inps.fig_title, inps.fig_ext)]
inps = update_figure_setting(inps)
return inps
##################################################################################################
def update_data_with_plot_inps(data, metadata, inps):
# 1. spatial referencing with respect to the seed point
if inps.ref_yx: # and inps.ref_yx != [int(metadata['REF_Y']), int(metadata['REF_X'])]:
# update ref_y/x to subset
try:
ref_y = inps.ref_yx[0] - inps.pix_box[1]
ref_x = inps.ref_yx[1] - inps.pix_box[0]
except:
pass
# update ref_y/x for multilooking
if inps.multilook_num > 1:
ref_y = int((ref_y - int(inps.multilook_num / 2)) / inps.multilook_num)
ref_x = int((ref_x - int(inps.multilook_num / 2)) / inps.multilook_num)
# applying spatial referencing
if len(data.shape) == 2:
ref_val = data[ref_y, ref_x]
if not np.ma.is_masked(ref_val) and not np.isnan(ref_val):
data -= ref_val
vprint('set reference pixel to: {}'.format(inps.ref_yx))
else:
msg = 'WARNING: input reference pixel ({}, {}) has either masked or NaN value!'.format(ref_y, ref_x)
msg += ' -> skip re-referencing.'
print(msg)
inps.ref_yx = None
elif len(data.shape) == 3:
# read ref_val
if 0 <= ref_y < data.shape[-2] and 0 <= ref_x < data.shape[-1]:
ref_val = np.squeeze(data[:, ref_y, ref_x])
elif inps.key == 'timeseries':
ref_box = [inps.ref_yx[1], inps.ref_yx[0],
inps.ref_yx[1] + 1, inps.ref_yx[0] + 1]
ref_val = readfile.read(inps.file, datasetName=inps.dset, box=ref_box, print_msg=False)[0]
else:
raise ValueError('input reference point {} is out of data coverage!'.format(inps.ref_yx))
# apply referencing
if not np.ma.is_masked(ref_val) and np.all(~np.isnan(ref_val)):
data -= np.tile(ref_val.reshape(-1, 1, 1), (1, data.shape[1], data.shape[2]))
vprint('set reference pixel to: {}'.format(inps.ref_yx))
else:
msg = 'WARNING: input reference pixel ({}, {}) has either masked or NaN value!'.format(ref_y, ref_x)
msg += ' -> skip re-referencing.'
print(msg)
inps.ref_yx = None
else:
inps.ref_yx = None
# 2. scale data based on the display unit and re-wrap
(data,
inps.disp_unit,
inps.disp_scale,
inps.wrap) = pp.scale_data4disp_unit_and_rewrap(data,
metadata=metadata,
disp_unit=inps.disp_unit,
wrap=inps.wrap,
wrap_range=inps.wrap_range,
print_msg=inps.print_msg)
if inps.wrap:
inps.vlim = inps.wrap_range
# math operation
if inps.math_operation:
vprint('Apply math operation: {}'.format(inps.math_operation))
if inps.math_operation == 'square':
data = np.square(data)
elif inps.math_operation == 'sqrt':
data = np.sqrt(data)
elif inps.math_operation == 'reverse':
data *= -1
elif inps.math_operation == 'inverse':
data = 1. / data
# 4. update display min/max
inps.dlim = [np.nanmin(data), np.nanmax(data)]
if not inps.vlim: # and data.ndim < 3:
inps.cmap_lut, inps.vlim = pp.auto_adjust_colormap_lut_and_disp_limit(data, print_msg=inps.print_msg)
vprint('data range: {} {}'.format(inps.dlim, inps.disp_unit))
vprint('display range: {} {}'.format(inps.vlim, inps.disp_unit))
return data, inps
##################################################################################################
def plot_slice(ax, data, metadata, inps=None):
"""Plot one slice of matrix
Parameters: ax : matplot.pyplot axes object
data : 2D np.array,
metadata : dictionary, attributes of data
inps : Namespace, optional, input options for display
Returns: ax : matplot.pyplot axes object
inps : Namespace for input options
im : matplotlib.image.AxesImage object
cbar : matplotlib.colorbar.Colorbar object
Example: import matplotlib.pyplot as plt
import mintpy.utils.readfile as readfile
import mintpy.view as pv
data, atr = readfile.read('velocity.h5')
fig = plt.figure()
ax = fig.add_axes([0.1,0.1,0.8,0.8])
ax = pv.plot_slice(ax, data, atr)[0]
plt.show()
"""
global vprint
vprint = print if inps.print_msg else lambda *args, **kwargs: None
#--------------------------- Initial a inps Namespace if no inps input -----------------------#
if not inps:
inps = cmd_line_parse([''])
inps = update_inps_with_file_metadata(inps, metadata)
if isinstance(inps.colormap, str):
inps.colormap = pp.ColormapExt(inps.colormap,
cmap_lut=inps.cmap_lut,
vlist=inps.cmap_vlist).colormap
# read DEM
if inps.dem_file:
dem, dem_metadata, dem_pix_box = pp.read_dem(inps.dem_file,
pix_box=inps.pix_box,
geo_box=inps.geo_box,
print_msg=inps.print_msg)
vprint('display data in transparency: '+str(inps.transparency))
#----------------------- Plot in Geo-coordinate --------------------------------------------#
num_row, num_col = data.shape
if (inps.geo_box
and inps.coord_unit.startswith(('deg', 'meter'))
and inps.fig_coord == 'geo'):
vprint('plot in geo-coordinate')
# Draw coastline using cartopy resolution parameters
if inps.coastline:
vprint('draw coast line with resolution: {}'.format(inps.coastline))
ax.coastlines(resolution=inps.coastline)
# Plot DEM
if inps.dem_file:
vprint('plotting DEM background ...')
pp.plot_dem_background(ax=ax, geo_box=inps.geo_box,
dem=dem, inps=inps,
print_msg=inps.print_msg)
# Plot Data
coord = ut.coordinate(metadata)
vprint('plotting image ...')
if inps.disp_gps and inps.gps_component and inps.ref_gps_site:
ref_site_lalo = GPS(site=inps.ref_gps_site).get_stat_lat_lon(print_msg=False)
y, x = coord.geo2radar(ref_site_lalo[0], ref_site_lalo[1])[0:2]
y -= inps.pix_box[1]
x -= inps.pix_box[0]
data -= data[y, x]
vprint(('referencing InSAR data to the pixel nearest to '
'GPS station: {} at {}').format(inps.ref_gps_site, ref_site_lalo))
# do not show the original InSAR reference point
inps.disp_ref_pixel = False
extent = (inps.geo_box[0], inps.geo_box[2],
inps.geo_box[3], inps.geo_box[1]) # (W, E, S, N)
im = ax.imshow(data, cmap=inps.colormap, vmin=inps.vlim[0], vmax=inps.vlim[1],
extent=extent, origin='upper', interpolation='nearest',
alpha=inps.transparency, animated=inps.animation, zorder=1)
# Scale Bar
if inps.coord_unit.startswith('deg') and (inps.geo_box[2] - inps.geo_box[0]) > 30:
# do not plot scalebar if the longitude span > 30 deg
inps.disp_scalebar = False
if inps.disp_scalebar:
vprint('plot scale bar: {}'.format(inps.scalebar))
pp.draw_scalebar(ax,
geo_box=inps.geo_box,
unit=inps.coord_unit,
loc=inps.scalebar,
labelpad=inps.scalebar_pad,
font_size=inps.font_size)
# Lat Lon labels
if inps.lalo_label:
pp.draw_lalo_label(inps.geo_box, ax,
lalo_step=inps.lalo_step,
lalo_loc=inps.lalo_loc,
lalo_max_num=inps.lalo_max_num,
font_size=inps.font_size,
projection=inps.map_proj_obj,
print_msg=inps.print_msg)
else:
ax.tick_params(which='both', direction='in', labelsize=inps.font_size,
left=True, right=True, top=True, bottom=True)
# Plot Reference Point
if inps.disp_ref_pixel and inps.ref_lalo:
ax.plot(inps.ref_lalo[1], inps.ref_lalo[0],
inps.ref_marker, ms=inps.ref_marker_size)
vprint('plot reference point')
# Plot points of interest
if inps.pts_lalo is not None:
ax.plot(inps.pts_lalo[:, 1], inps.pts_lalo[:, 0],
inps.pts_marker, ms=inps.pts_marker_size,
mec='k', mew=1.)
vprint('plot points of interest')
# Show UNR GPS stations
if inps.disp_gps:
SNWE = (inps.geo_box[3], inps.geo_box[1],
inps.geo_box[0], inps.geo_box[2])
ax = pp.plot_gps(ax, SNWE, inps, metadata, print_msg=inps.print_msg)
# Status bar
if inps.dem_file:
coord_dem = ut.coordinate(dem_metadata)
dem_len, dem_wid = dem.shape
def format_coord(x, y):
msg = 'E={:.4f}, N={:.4f}'.format(x, y)
col = coord.lalo2yx(x, coord_type='lon') - inps.pix_box[0]
row = coord.lalo2yx(y, coord_type='lat') - inps.pix_box[1]
if 0 <= col < num_col and 0 <= row < num_row:
v = data[row, col]
if np.isnan(v) or np.ma.is_masked(v):
msg += ', v=[]'
else:
msg += ', v={:.3f}'.format(v)
# DEM
if inps.dem_file:
dem_col = coord_dem.lalo2yx(x, coord_type='lon') - dem_pix_box[0]
dem_row = coord_dem.lalo2yx(y, coord_type='lat') - dem_pix_box[1]
if 0 <= dem_col < dem_wid and 0 <= dem_row < dem_len:
h = dem[dem_row, dem_col]
if not np.isnan(h):
msg += ', h={:.0f}'.format(h)
# x/y
msg += ', x={:.0f}, y={:.0f}'.format(col+inps.pix_box[0],
row+inps.pix_box[1])
return msg
ax.format_coord = format_coord
#------------------------ Plot in Y/X-coordinate ------------------------------------------------#
else:
inps.fig_coord = 'radar'
vprint('plotting in Y/X coordinate ...')
# Plot DEM
if inps.dem_file:
vprint('plotting DEM background ...')
pp.plot_dem_background(ax=ax, geo_box=None, dem=dem,
inps=inps, print_msg=inps.print_msg)
# Plot Data
vprint('plotting Data ...')
extent = (inps.pix_box[0]-0.5, inps.pix_box[2]-0.5,
inps.pix_box[3]-0.5, inps.pix_box[1]-0.5) #(left, right, bottom, top) in data coordinates
im = ax.imshow(data, cmap=inps.colormap, vmin=inps.vlim[0], vmax=inps.vlim[1],
extent=extent, interpolation='nearest', alpha=inps.transparency, zorder=1)
ax.tick_params(labelsize=inps.font_size)
# Plot Seed Point
if inps.disp_ref_pixel:
ref_y, ref_x = None, None
if inps.ref_yx:
ref_y, ref_x = inps.ref_yx[0], inps.ref_yx[1]
elif 'REF_Y' in metadata.keys():
ref_y, ref_x = int(metadata['REF_Y']), int(metadata['REF_X'])
if ref_y and ref_x:
ax.plot(ref_x, ref_y, inps.ref_marker, ms=inps.ref_marker_size)
vprint('plot reference point')
# Plot points of interest
if inps.pts_yx is not None:
ax.plot(inps.pts_yx[:, 1], inps.pts_yx[:, 0],
inps.pts_marker, ms=inps.ref_marker_size,
mec='black', mew=1.)
vprint('plot points of interest')
# temporary test code
temp_test = False
if temp_test:
# Champlain Towers South AOI
pts_yx = np.array([
[929,1456],
[933,1457],
[933,1436],
[930,1431],
[929,1456],
])
ax.plot(pts_yx[:, 1], pts_yx[:, 0], '-', ms=inps.ref_marker_size, mec='black', mew=1.)
ax.set_xlim(extent[0:2])
ax.set_ylim(extent[2:4])
# Status bar
# read lats/lons if exist
geom_file = os.path.join(os.path.dirname(metadata['FILE_PATH']), 'inputs/geometryRadar.h5')
if os.path.isfile(geom_file):
try:
lats = readfile.read(geom_file, datasetName='latitude', box=inps.pix_box, print_msg=False)[0]
lons = readfile.read(geom_file, datasetName='longitude', box=inps.pix_box, print_msg=False)[0]
except:
msg = 'WARNING: no latitude / longitude found in file: {}, '.format(os.path.basename(geom_file))
msg += 'skip showing lat/lon in the status bar.'
vprint(msg)
geom_file = None
else:
geom_file = None
def format_coord(x, y):
msg = 'x={:.1f}, y={:.1f}'.format(x, y)
col = int(np.rint(x - inps.pix_box[0]))
row = int(np.rint(y - inps.pix_box[1]))
if 0 <= col < num_col and 0 <= row < num_row:
v = data[row, col]
if np.isnan(v) or np.ma.is_masked(v):
msg += ', v=[]'
else:
msg += ', v={:.3f}'.format(v)
# DEM
if inps.dem_file:
h = dem[row, col]
if not np.isnan(h):
msg += ', h={:.0f} m'.format(h)
# lat/lon
if geom_file:
msg += ', lat={:.4f}, lon={:.4f}'.format(lats[row, col], lons[row, col])
return msg
ax.format_coord = format_coord
#---------------------- Figure Setting ----------------------------------------#
# 3.1 Colorbar
cbar = None
if inps.disp_cbar:
divider = make_axes_locatable(ax)
cax = divider.append_axes(inps.cbar_loc, inps.cbar_size, pad=inps.cbar_size, axes_class=plt.Axes)
inps, cbar = pp.plot_colorbar(inps, im, cax)
# 3.2 Title
if inps.disp_title:
ax.set_title(inps.fig_title, fontsize=inps.font_size,
color=inps.font_color)
# 3.3 Flip Left-Right / Up-Down
if inps.flip_lr:
vprint('flip figure left and right')
ax.invert_xaxis()
if inps.flip_ud:
vprint('flip figure up and down')
ax.invert_yaxis()
# 3.4 Turn off axis
if not inps.disp_axis:
ax.axis('off')
vprint('turn off axis display')
# 3.5 Turn off tick label
if inps.disp_tick:
# manually turn ON to enable tick labels for UTM with cartopy
# link: https://github.com/SciTools/cartopy/issues/491
ax.xaxis.set_visible(True)
ax.yaxis.set_visible(True)
else:
# ax.set_xticklabels([])
# ax.set_yticklabels([])
ax.get_xaxis().set_ticks([])
ax.get_yaxis().set_ticks([])
return ax, inps, im, cbar
def read_input_file_info(inps):
# File Basic Info
atr = readfile.read_attribute(inps.file)
msg = 'input file is '
if not inps.file.endswith(('.h5', '.he5')):
msg += '{} '.format(atr['PROCESSOR'])
msg += '{} file: {}'.format(atr['FILE_TYPE'], os.path.abspath(inps.file))
if 'DATA_TYPE' in atr.keys():
msg += ' in {} format'.format(atr['DATA_TYPE'])
vprint('run {} in {}'.format(os.path.basename(__file__), version.version_description))
vprint(msg)
## size and name
inps.length = int(atr['LENGTH'])
inps.width = int(atr['WIDTH'])
inps.key = atr['FILE_TYPE']
inps.fileBase = os.path.splitext(os.path.basename(inps.file))[0]
inps.fileExt = os.path.splitext(inps.file)[1]
vprint('file size in y/x: {}'.format((inps.length, inps.width)))
# File dataset List
inps.sliceList = readfile.get_slice_list(inps.file, no_complex=True)
# Read input list of dataset to display
inps, atr = read_dataset_input(inps)
return inps, atr
def search_dataset_input(allList, inList=[], inNumList=[], search_dset=True):
"""Get dataset(es) from input dataset / dataset_num"""
# make a copy to avoid weird variable behavior
inNumList = [x for x in inNumList]
# inList --> inNumList --> outNumList --> outList
if inList:
if isinstance(inList, str):
inList = [inList]
tempList = []
if search_dset:
for ds in inList:
# style of regular expression
if '*' not in ds:
ds = '*{}*'.format(ds)
ds = ds.replace('*','.*')
# search
tempList += [e for e in allList
if re.match(ds, e) is not None]
else:
tempList += [i for i in inList if i in allList]
tempList = sorted(list(set(tempList)))
inNumList += [allList.index(e) for e in tempList]
# inNumList --> outNumList
outNumList = sorted(list(set(inNumList)))
# outNumList --> outList
outList = [allList[i] for i in outNumList]
return outList, outNumList
def read_dataset_input(inps):
"""Check input / exclude / reference dataset input with file dataset list"""
# read inps.dset + inps.dsetNumList --> inps.dsetNumList
if len(inps.dset) > 0 or len(inps.dsetNumList) > 0:
# message
if len(inps.dset) > 0:
vprint('input dataset: "{}"'.format(inps.dset))
# special rule for special file types
if inps.key == 'velocity':
inps.search_dset = False
vprint('turning glob search OFF for {} file'.format(inps.key))
elif inps.key == 'timeseries' and len(inps.dset) == 1 and '_' in inps.dset[0]:
date1, date2 = inps.dset[0].split('_')
inps.dset = [date2]
inps.ref_date = date1
# search
inps.dsetNumList = search_dataset_input(inps.sliceList,
inps.dset,
inps.dsetNumList,
inps.search_dset)[1]
else:
# default dataset to display for certain type of files
if inps.key == 'ifgramStack':
inps.dset = ['unwrapPhase']
elif inps.key == 'HDFEOS':
inps.dset = ['displacement']
elif inps.key == 'giantTimeseries':
inps.dset = 'recons'
elif inps.key == 'giantIfgramStack':
obj = giantIfgramStack(inps.file)
obj.open(print_msg=False)
inps.dset = [obj.sliceList[0].split('-')[0]]
else:
inps.dset = inps.sliceList
# do not plot 3D-bperp by default
if inps.key == 'geometry':
inps.dset = [x for x in inps.dset if not x.startswith('bperp')]
inps.dsetNumList = search_dataset_input(inps.sliceList,
inps.dset,
inps.dsetNumList,
inps.search_dset)[1]
# read inps.exDsetList
inps.exDsetList, inps.exDsetNumList = search_dataset_input(inps.sliceList,
inps.exDsetList,
[],
inps.search_dset)
# read inps.plot_drop_ifgram
drop_num_list = []
atr = readfile.read_attribute(inps.file)
if not inps.plot_drop_ifgram:
if atr['FILE_TYPE'] == 'ifgramStack':
vprint('do not show the dropped interferograms')
date12_drop_list = ifgramStack(inps.file).get_drop_date12_list()
drop_slice_list = [x for x in inps.sliceList if x.split('-')[1] in date12_drop_list]
drop_num_list = [inps.sliceList.index(x) for x in drop_slice_list]
else:
vprint('--show-kept option does not apply to file type: {}, ignore and continue.'.format(atr['FILE_TYPE']))
inps.plot_drop_ifgram = True
# get inps.dset
inps.dsetNumList = sorted(list(set(inps.dsetNumList) - set(inps.exDsetNumList) - set(drop_num_list)))
inps.dset = [inps.sliceList[i] for i in inps.dsetNumList]
inps.dsetNum = len(inps.dset)
if inps.ref_date:
if inps.key not in timeseriesKeyNames:
inps.ref_date = None
ref_date = search_dataset_input(inps.sliceList,
[inps.ref_date],
[],
inps.search_dset)[0][0]
if not ref_date:
print('WARNING: input reference date {} is not included in input file! Ignore it and continue'.format(inps.ref_date))
inps.ref_date = None
else:
inps.ref_date = ref_date
if inps.key in ['ifgramStack']:
vprint('num of datasets in file {}: {}'.format(os.path.basename(inps.file), len(inps.sliceList)))
vprint('num of datasets to exclude: {}'.format(len(inps.exDsetList)))
vprint('num of datasets to display: {}'.format(len(inps.dset)))
else:
vprint('num of datasets in file {}: {}'.format(os.path.basename(inps.file), len(inps.sliceList)))
vprint('datasets to exclude ({}):\n{}'.format(len(inps.exDsetList), inps.exDsetList))
vprint('datasets to display ({}):\n{}'.format(len(inps.dset), inps.dset))
if inps.ref_date and inps.key in timeseriesKeyNames:
vprint('input reference date: {}'.format(inps.ref_date))
if inps.dsetNum == 0:
msg = 'No input dataset found!'
msg += '\navailable datasets:\n{}'.format(inps.sliceList)
raise Exception(msg)
atr = readfile.read_attribute(inps.file, datasetName=inps.dset[0].split('-')[0])
return inps, atr
def update_figure_setting(inps):
"""Update figure setting based on number of subplots/datasets
1) fig_size and font_size
2) for multi: figure/row/column number
3) for multi: output file name
"""
length = float(inps.pix_box[3]-inps.pix_box[1])
width = float(inps.pix_box[2]-inps.pix_box[0])
# One Plot
if inps.dsetNum == 1:
if not inps.font_size:
inps.font_size = 16
if not inps.fig_size:
# update length/width based on lat/lon
if inps.geo_box and inps.fig_coord == 'geo':
length = abs(inps.geo_box[3] - inps.geo_box[1])
width = abs(inps.geo_box[2] - inps.geo_box[0])
# auto figure size
inps.fig_size = pp.auto_figure_size(ds_shape=(length, width),
disp_cbar=inps.disp_cbar,
print_msg=inps.print_msg)
# Multiple Plots
else:
if not inps.fig_size:
inps.fig_size = pp.default_figsize_multi
vprint('figure size : [{:.2f}, {:.2f}]'.format(inps.fig_size[0], inps.fig_size[1]))
# Figure number (<= 200 subplots per figure)
if not inps.fig_num:
inps.fig_num = 1
while inps.dsetNum/float(inps.fig_num) > 160.0:
inps.fig_num += 1
# Row/Column number
if (inps.fig_row_num == 1 and inps.fig_col_num == 1
and all(i not in inps.argv for i in ['--nrows', '--ncols'])):
# calculate row and col number based on input info
data_shape = [length*1.1, width]
fig_size4plot = [inps.fig_size[0]*0.95, inps.fig_size[1]]
(inps.fig_row_num,
inps.fig_col_num) = pp.auto_row_col_num(inps.dsetNum,
data_shape,
fig_size4plot,
inps.fig_num)
inps.fig_num = np.ceil(float(inps.dsetNum) / float(inps.fig_row_num *
inps.fig_col_num)).astype(int)
vprint('dataset number: '+str(inps.dsetNum))
vprint('row number: '+str(inps.fig_row_num))
vprint('column number: '+str(inps.fig_col_num))
vprint('figure number: '+str(inps.fig_num))
if not inps.font_size:
inps.font_size = 12
if inps.fig_row_num * inps.fig_col_num > 50:
inps.font_size = 8
# Output File Name
if inps.outfile:
inps.outdir = os.path.dirname(inps.outfile[0])
inps.outfile_base, inps.fig_ext = os.path.splitext(os.path.basename(inps.outfile[0]))
inps.fig_ext = inps.fig_ext.lower()
else:
inps.outdir = os.path.dirname(inps.file)
inps.outfile_base = os.path.splitext(os.path.basename(inps.file))[0]
# suffix
if (inps.pix_box[2]-inps.pix_box[0])*(inps.pix_box[3]-inps.pix_box[1]) < width*length:
inps.outfile_base += '_sub'
if inps.wrap:
inps.outfile_base += '_wrap'
if (inps.wrap_range[1] - inps.wrap_range[0]) != 2*np.pi:
inps.outfile_base += str(inps.wrap_range[1] - inps.wrap_range[0])
if inps.ref_date:
inps.outfile_base += '_ref'+inps.ref_date
if inps.exDsetList:
inps.outfile_base += '_ex'
# output file name list
if inps.fig_num == 1:
inps.outfile = ['{}{}'.format(inps.outfile_base, inps.fig_ext)]
else:
inps.outfile = ['{}_{}{}'.format(inps.outfile_base, str(j), inps.fig_ext)
for j in range(1, inps.fig_num+1)]
inps.outfile = [os.path.join(inps.outdir, outfile) for outfile in inps.outfile]
return inps
def read_data4figure(i_start, i_end, inps, metadata):
"""Read multiple datasets for one figure into 3D matrix based on i_start/end"""
data = np.zeros((i_end - i_start,
int((inps.pix_box[3] - inps.pix_box[1]) / inps.multilook_num),
int((inps.pix_box[2] - inps.pix_box[0]) / inps.multilook_num),
), dtype=np.float32)
# fast reading for single dataset type
if (len(inps.dsetFamilyList) == 1
and inps.key in ['timeseries', 'giantTimeseries', 'ifgramStack', 'HDFEOS', 'geometry']):
vprint('reading data as a 3D matrix ...')
dset_list = [inps.dset[i] for i in range(i_start, i_end)]
data[:] = readfile.read(inps.file,
datasetName=dset_list,
box=inps.pix_box,
xstep=inps.multilook_num,
ystep=inps.multilook_num,
print_msg=inps.print_msg)[0]
if inps.key == 'ifgramStack':
# reference pixel info in unwrapPhase
if inps.dsetFamilyList[0].startswith('unwrapPhase') and inps.file_ref_yx:
ref_y, ref_x = inps.file_ref_yx
ref_box = (ref_x, ref_y, ref_x+1, ref_y+1)
ref_data = readfile.read(inps.file,
datasetName=dset_list,
box=ref_box,
print_msg=False)[0]
for i in range(data.shape[0]):
mask = data[i, :, :] != 0.
data[i, mask] -= ref_data[i]
# slow reading with one 2D matrix at a time
else:
vprint('reading data as a list of 2D matrices ...')
prog_bar = ptime.progressBar(maxValue=i_end-i_start, print_msg=inps.print_msg)
for i in range(i_start, i_end):
d = readfile.read(inps.file,
datasetName=inps.dset[i],
box=inps.pix_box,
xstep=inps.multilook_num,
ystep=inps.multilook_num,
print_msg=False)[0]
data[i - i_start, :, :] = d
prog_bar.update(i - i_start + 1, suffix=inps.dset[i].split('/')[-1])
prog_bar.close()
# ref_date for timeseries
if inps.ref_date:
vprint('consider input reference date: '+inps.ref_date)
ref_data = readfile.read(inps.file,
datasetName=inps.ref_date,
box=inps.pix_box,
xstep=inps.multilook_num,
ystep=inps.multilook_num,
print_msg=False)[0]
data -= ref_data
# check if all subplots share the same data unit, they could have/be:
# 1) the same type OR
# 2) velocity or timeseries OR
# 3) horizontal/vertical output from asc_desc2horz_vert.py
# 4) data/model output from load_gbis.py OR
# 5) binary files with multiple undefined datasets, as band1, band2, etc.
if (len(inps.dsetFamilyList) == 1
or inps.key in ['timeseries', 'inversion']
or all(d in inps.dsetFamilyList for d in ['horizontal', 'vertical'])
or inps.dsetFamilyList == ['data','model','residual']
or inps.dsetFamilyList == ['band{}'.format(i+1) for i in range(len(inps.dsetFamilyList))]):
same_unit4all_subplots = True
else:
same_unit4all_subplots = False
# adjust data due to spatial referencing and unit related scaling
if same_unit4all_subplots:
data, inps = update_data_with_plot_inps(data, metadata, inps)
else:
if any(x in inps.iargs for x in ['-u', '--unit']):
print('WARNING: -u/--unit option is disabled for multi-subplots with different units! Ignore it and continue')
inps.disp_unit = None
# mask
if inps.zero_mask:
vprint('masking pixels with zero value')
data = np.ma.masked_where(data == 0., data)
if inps.msk is not None:
vprint('masking data')
msk = np.tile(inps.msk, (data.shape[0], 1, 1))
data = np.ma.masked_where(msk == 0., data)
# update display min/max
inps.dlim = [np.nanmin(data), np.nanmax(data)]
if (same_unit4all_subplots
and all(arg not in inps.argv for arg in ['-v', '--vlim', '--wrap'])
and not (inps.dsetFamilyList[0].startswith('unwrap') and not inps.file_ref_yx)
and inps.dsetFamilyList[0] not in ['bperp']):
inps.cmap_lut, inps.vlim = pp.auto_adjust_colormap_lut_and_disp_limit(data,
num_multilook=10,
print_msg=False)
return data
def plot_subplot4figure(i, inps, ax, data, metadata):
"""Plot one subplot for one 3D array
1) Plot DEM, data and reference pixel
2) axes setting: tick, ticklabel, title, axis etc.
"""
# Plot DEM
if inps.dem_file:
pp.plot_dem_background(ax=ax, geo_box=None,
dem_shade=inps.dem_shade,
dem_contour=inps.dem_contour,
dem_contour_seq=inps.dem_contour_seq,
inps=inps,
print_msg=inps.print_msg)
# Plot Data
vlim = inps.vlim
if vlim is None:
vlim = [np.nanmin(data), np.nanmax(data)]
extent = (inps.pix_box[0]-0.5, inps.pix_box[2]-0.5,
inps.pix_box[3]-0.5, inps.pix_box[1]-0.5)
im = ax.imshow(data, cmap=inps.colormap, vmin=vlim[0], vmax=vlim[1],
interpolation='nearest', alpha=inps.transparency,
extent=extent, zorder=1)
# Plot Seed Point
if inps.disp_ref_pixel:
ref_y, ref_x = None, None
if inps.ref_yx:
ref_y, ref_x = inps.ref_yx[0], inps.ref_yx[1]
elif 'REF_Y' in metadata.keys():
ref_y, ref_x = int(metadata['REF_Y']), int(metadata['REF_X'])
if ref_y and ref_x:
ax.plot(ref_x, ref_y, inps.ref_marker, ms=inps.ref_marker_size)
ax.set_xlim(extent[0:2])
ax.set_ylim(extent[2:4])
# Subplot Setting
## Tick and Label
if not inps.disp_tick or inps.fig_row_num * inps.fig_col_num > 10:
ax.get_xaxis().set_ticks([])
ax.get_yaxis().set_ticks([])
# status bar
def format_coord(x, y):
return 'x={:.1f}, y={:.1f}, v ='.format(x, y)
ax.format_coord = format_coord
# Title
if inps.disp_title:
# get title
subplot_title = None
if inps.key in timeseriesKeyNames or inps.dset[0].startswith('bperp'):
# support / for py2-mintpy
date_str = inps.dset[i].replace('/','-').split('-')[1]
try:
subplot_title = dt.datetime.strptime(date_str, '%Y%m%d').isoformat()[0:10]
except:
subplot_title = date_str
else:
# dset info - name & index
title_str = inps.dset[i]
title_ind = inps.sliceList.index(title_str)
# ignore dataset family info if there is only one type
if len(inps.dsetFamilyList) == 1 and '-' in title_str:
title_str = title_str.split('-')[1]
# for ifgramStack, show index in the date12 list to facilitate the network modfication
if inps.atr['FILE_TYPE'] == 'ifgramStack':
title_ind = inps.date12List.index(title_str)
# title style depending on the number of subplots
num_subplot = inps.fig_row_num * inps.fig_col_num
if num_subplot <= 6:
subplot_title = title_str
elif 6 < num_subplot <= 20:
subplot_title = '{}\n{}'.format(title_ind, title_str)
elif 20 < num_subplot <= 50:
subplot_title = title_str.replace('_','\n').replace('-','\n')
else:
subplot_title = '{}'.format(title_ind)
# plot title
if subplot_title:
if inps.fig_title_in:
prop = dict(size=inps.font_size)
pp.add_inner_title(ax, subplot_title, loc=1, prop=prop)
else:
kwarg = dict(fontsize=inps.font_size)
# mark dropped interferograms in bold crimson
if inps.dset[i] in inps.dropDatasetList:
kwarg['color'] = 'crimson'
kwarg['fontweight'] = 'bold'
else:
# special titles for Sentinel-1 data
if metadata.get('PLATFORM', None) == 'Sen' and inps.disp_title4sentinel1:
# display S1A/B in different colors
s1_sensor = metadata['SENTINEL1_SENSOR'].split()[i]
if s1_sensor == 'A':
kwarg['color'] = pp.mplColors[0]
else:
kwarg['color'] = pp.mplColors[1]
# display IPF in subplot title
s1_IPF = metadata['SENTINEL1_IPF'].split()[i]
subplot_title += ' : {}'.format(s1_IPF)
ax.set_title(subplot_title, **kwarg)
# Flip Left-Right / Up-Down
if inps.flip_lr:
ax.invert_xaxis()
if inps.flip_ud:
ax.invert_yaxis()
# Turn off axis
if not inps.disp_axis:
ax.axis('off')
return im
def plot_figure(j, inps, metadata):
"""Plot one figure with multiple subplots
1) create figure
2) read all data into 3D array
3) loop to plot each subplot using plot_subplot4figure()
4) common colorbar and save
"""
fig_title = 'Figure {} - {}'.format(str(j), inps.outfile[j-1])
vprint('----------------------------------------')
vprint(fig_title)
# Open a new figure object
fig, axs = plt.subplots(num=j,
figsize=inps.fig_size,
nrows=inps.fig_row_num,
ncols=inps.fig_col_num,
sharex=True,
sharey=True)
fig.canvas.manager.set_window_title(fig_title)
axs = axs.flatten()
# Read all data for the current figure into 3D np.array
i_start = (j - 1) * inps.fig_row_num * inps.fig_col_num
i_end = min([inps.dsetNum, i_start + inps.fig_row_num * inps.fig_col_num])
data = read_data4figure(i_start, i_end, inps, metadata)
if isinstance(inps.colormap, str):
inps.colormap = pp.ColormapExt(inps.colormap,
cmap_lut=inps.cmap_lut,
vlist=inps.cmap_vlist).colormap
# Loop - Subplots
vprint('plotting ...')
prog_bar = ptime.progressBar(maxValue=i_end-i_start, print_msg=inps.print_msg)
for i in range(i_start, i_end):
idx = i - i_start
im = plot_subplot4figure(i, inps, ax=axs[idx],
data=data[idx, :, :],
metadata=metadata)
# colorbar for each subplot
if inps.disp_cbar and not inps.vlim:
cbar = fig.colorbar(im, ax=axs[idx], pad=0.03, shrink=0.5, aspect=30, orientation='vertical')
# display unit as colorbar label
data_unit = readfile.read_attribute(inps.file, datasetName=inps.dset[i]).get('UNIT', None)
if data_unit:
cbar.set_label(data_unit)
prog_bar.update(idx+1, suffix=inps.dset[i].split('/')[-1])
prog_bar.close()
del data
# delete empty axes
for i in range(i_end-i_start, len(axs)):
fig.delaxes(axs[i])
# Min and Max for this figure
inps.dlim_all = [np.nanmin([inps.dlim_all[0], inps.dlim[0]]),
np.nanmax([inps.dlim_all[1], inps.dlim[1]])]
vprint('data range: {} {}'.format(inps.dlim, inps.disp_unit))
if inps.vlim:
vprint('display range: {} {}'.format(inps.vlim, inps.disp_unit))
# NOTE: For plt.subplots(), fig.tight_layout() should be run
# before fig.add_axes(), which is the case of common colorbar
# after fig.colorbar() and fig.set_size_inches(), which is the case of individual/multiple colorbars
def adjust_subplots_layout(fig, inps):
fig.subplots_adjust(left=0.02, right=0.98,
bottom=0.02, top=0.98,
wspace=0.05, hspace=0.05)
if inps.fig_wid_space or inps.fig_hei_space:
fig.subplots_adjust(hspace=inps.fig_hei_space,
wspace=inps.fig_wid_space)
elif inps.fig_tight_layout:
fig.tight_layout()
return
# Colorbar
if inps.disp_cbar:
if not inps.vlim:
vprint('Note: different color scale for EACH subplot!')
vprint('Adjust figsize for the colorbar of each subplot.')
fig.set_size_inches(inps.fig_size[0] * 1.1,
inps.fig_size[1])
adjust_subplots_layout(fig, inps)
else:
adjust_subplots_layout(fig, inps)
cbar_length = 0.4
if inps.fig_size[1] > 8.0:
cbar_length /= 2
vprint('show colorbar')
fig.subplots_adjust(right=0.93)
cax = fig.add_axes([0.94, (1.0-cbar_length)/2, 0.005, cbar_length])
inps, cbar = pp.plot_colorbar(inps, im, cax)
else:
adjust_subplots_layout(fig, inps)
# Save Figure
if inps.save_fig:
vprint('save figure to {} with dpi={}'.format(os.path.abspath(inps.outfile[j-1]), inps.fig_dpi))
fig.savefig(inps.outfile[j-1], bbox_inches='tight', transparent=True, dpi=inps.fig_dpi)
if not inps.disp_fig:
fig.clf()
return
def prepare4multi_subplots(inps, metadata):
"""Prepare for multiple subplots:
1) check multilook to save memory
2) read existed reference pixel info for unwrapPhase
3) read dropIfgram info
4) read and prepare DEM for background
"""
inps.dsetFamilyList = sorted(list(set(x.split('-')[0] for x in inps.dset)))
inps.dsetFamilyList = sorted(list(set(x.replace('Std','') for x in inps.dsetFamilyList)))
if len(inps.dsetFamilyList) == 1 and inps.atr['FILE_TYPE'] == 'ifgramStack':
inps.date12List = sorted(list(set(x.split('-')[1] for x in inps.sliceList)))
if inps.multilook_num > 1 and inps.print_msg:
print('multilook {0} by {0} with nearest interpolation'.format(inps.multilook_num))
elif inps.multilook and inps.multilook_num == 1:
## calculate multilook_num
# ONLY IF:
# inps.multilook is True (no --nomultilook input) AND
# inps.multilook_num ==1 (no --multilook-num input)
# inps.multilook is used for this check ONLY
inps.multilook_num = pp.auto_multilook_num(inps.pix_box, inps.fig_row_num * inps.fig_col_num,
max_memory=inps.maxMemory,
print_msg=inps.print_msg)
# multilook mask
if inps.msk is not None and inps.multilook_num > 1:
inps.msk = multilook_data(inps.msk,
inps.multilook_num,
inps.multilook_num,
method='nearest')
# Reference pixel for timeseries and ifgramStack
inps.file_ref_yx = None
if inps.key in ['ifgramStack'] and 'REF_Y' in metadata.keys():
ref_y, ref_x = int(metadata['REF_Y']), int(metadata['REF_X'])
length, width = int(metadata['LENGTH']), int(metadata['WIDTH'])
if 0 <= ref_y < length and 0 <= ref_x < width:
inps.file_ref_yx = [ref_y, ref_x]
vprint('consider reference pixel in y/x: {}'.format(inps.file_ref_yx))
if inps.dsetNum > 10:
inps.ref_marker_size /= 10.
elif inps.dsetNum > 100:
inps.ref_marker_size /= 20.
# Check dropped interferograms
inps.dropDatasetList = []
if inps.key == 'ifgramStack' and inps.disp_title:
obj = ifgramStack(inps.file)
obj.open(print_msg=False)
dropDate12List = obj.get_drop_date12_list()
for i in inps.dsetFamilyList:
inps.dropDatasetList += ['{}-{}'.format(i, j) for j in dropDate12List]
vprint("mark interferograms with 'dropIfgram=False' in red colored title")
# Read DEM
if inps.dem_file:
dem_metadata = readfile.read_attribute(inps.dem_file)
if all(dem_metadata[i] == metadata[i] for i in ['LENGTH', 'WIDTH']):
vprint('reading DEM: {} ... '.format(os.path.basename(inps.dem_file)))
dem = readfile.read(inps.dem_file,
datasetName='height',
box=inps.pix_box,
xstep=inps.multilook_num,
ystep=inps.multilook_num,
print_msg=False)[0]
(inps.dem_shade,
inps.dem_contour,
inps.dem_contour_seq) = pp.prepare_dem_background(dem=dem,
inps=inps,
print_msg=inps.print_msg)
else:
inps.dem_file = None
inps.transparency = 1.0
msg = 'WARNING: DEM file has a different size from the data file. '
msg += 'This feature is only supported for single subplot, and not for multi-subplots.'
msg += '\n --> Ignore it and continue.'
print(msg)
return inps
##################################################################################################
def prep_slice(cmd, auto_fig=False):
"""Prepare data from command line as input, for easy call plot_slice() externally
Parameters: cmd - string, command to be run in terminal
Returns: data - 2D np.ndarray, data to be plotted
atr - dict, metadata
inps - namespace, input argument for plot setup
Example:
subplot_kw = dict(projection=ccrs.PlateCarree())
fig, ax = plt.subplots(figsize=[4, 3], subplot_kw=subplot_kw)
W, N, E, S = (-91.670, -0.255, -91.370, -0.515) # geo_box
cmd = 'view.py geo_velocity.h5 velocity --mask geo_maskTempCoh.h5 --dem srtm1.dem --dem-nocontour '
cmd += f'--sub-lon {W} {E} --sub-lat {S} {N} -c jet -v -3 10 '
cmd += '--cbar-loc bottom --cbar-nbins 3 --cbar-ext both --cbar-size 5% '
cmd += '--lalo-step 0.2 --lalo-loc 1 0 1 0 --scalebar 0.3 0.80 0.05 --notitle'
data, atr ,inps = view.prep_slice(cmd)
ax, inps, im, cbar = view.plot_slice(ax, data, atr, inps)
plt.show()
"""
inps = cmd_line_parse(cmd.split()[1:])
inps.argv = cmd.split()[1:]
vprint(cmd)
inps, atr = read_input_file_info(inps)
inps = update_inps_with_file_metadata(inps, atr)
inps.msk, inps.mask_file = pp.read_mask(inps.file,
mask_file=inps.mask_file,
datasetName=inps.dset[0],
box=inps.pix_box,
vmin=inps.mask_vmin,
vmax=inps.mask_vmax,
print_msg=inps.print_msg)
# read data
data, atr = readfile.read(inps.file,
datasetName=inps.dset[0],
box=inps.pix_box,
print_msg=inps.print_msg)
# reference in time
if inps.ref_date:
data -= readfile.read(inps.file,
datasetName=inps.ref_date,
box=inps.pix_box,
print_msg=False)[0]
# reference in space for unwrapPhase
if (inps.key in ['ifgramStack']
and inps.dset[0].split('-')[0].startswith('unwrapPhase')
and 'REF_Y' in atr.keys()):
ref_y, ref_x = int(atr['REF_Y']), int(atr['REF_X'])
ref_data = readfile.read(inps.file,
datasetName=inps.dset[0],
box=(ref_x, ref_y, ref_x+1, ref_y+1),
print_msg=False)[0]
data[data != 0.] -= ref_data
# masking
if inps.zero_mask:
data = np.ma.masked_where(data == 0., data)
if inps.msk is not None:
data = np.ma.masked_where(inps.msk == 0., data)
else:
inps.msk = np.ones(data.shape, dtype=np.bool_)
# update/save mask info
if np.ma.is_masked(data):
inps.msk *= ~data.mask
inps.msk *= ~np.isnan(data.data)
else:
inps.msk *= ~np.isnan(data)
data, inps = update_data_with_plot_inps(data, atr, inps)
# matplotlib.Axes
if auto_fig == True:
figsize = [i/2.0 for i in inps.fig_size]
subplot_kw = dict(projection=inps.map_proj_obj) if inps.map_proj_obj is not None else {}
fig, ax = plt.subplots(figsize=figsize, num='Figure', subplot_kw=subplot_kw)
return data, atr, inps, ax
else:
return data, atr, inps
##################################################################################################
class viewer():
"""Class for view.py
Example:
import matplotlib.pyplot as plt
from mintpy.view import viewer
cmd = 'view.py timeseries.h5'
obj = viewer(cmd)
obj.configure()
obj.plot()
"""
def __init__(self, cmd=None, iargs=None):
if cmd:
iargs = cmd.split()[1:]
self.cmd = cmd
self.iargs =iargs
return
def configure(self):
inps = cmd_line_parse(self.iargs)
inps.argv = list(self.iargs)
inps, self.atr = read_input_file_info(inps)
inps = update_inps_with_file_metadata(inps, self.atr)
# --update option
self.flag = 'run'
if inps.update_mode and not inps.disp_fig and run_or_skip(inps) == 'skip':
self.flag = 'skip'
# copy inps to self object
for key, value in inps.__dict__.items():
setattr(self, key, value)
# read mask
self.msk, self.mask_file = pp.read_mask(self.file,
mask_file=self.mask_file,
datasetName=self.dset[0],
box=self.pix_box,
vmin=self.mask_vmin,
vmax=self.mask_vmax,
print_msg=self.print_msg)
return self.flag
def plot(self):
# One Subplot
if self.dsetNum == 1:
vprint('reading data ...')
# read data
data, self.atr = readfile.read(self.file,
datasetName=self.dset[0],
box=self.pix_box,
print_msg=False)
# reference in time
if self.ref_date:
data -= readfile.read(self.file,
datasetName=self.ref_date,
box=self.pix_box,
print_msg=False)[0]
# reference in space for unwrapPhase
if (self.key in ['ifgramStack']
and self.dset[0].split('-')[0].startswith('unwrapPhase')
and 'REF_Y' in self.atr.keys()):
ref_y, ref_x = int(self.atr['REF_Y']), int(self.atr['REF_X'])
ref_data = readfile.read(self.file,
datasetName=self.dset[0],
box=(ref_x, ref_y, ref_x+1, ref_y+1),
print_msg=False)[0]
data[data != 0.] -= ref_data
# masking
if self.zero_mask:
vprint('masking pixels with zero value')
data = np.ma.masked_where(data == 0., data)
if self.msk is not None:
vprint('masking data')
data = np.ma.masked_where(self.msk == 0., data)
else:
self.msk = np.ones(data.shape, dtype=np.bool_)
# update/save mask info
if np.ma.is_masked(data):
self.msk *= ~data.mask
self.msk *= ~np.isnan(data.data)
else:
self.msk *= ~np.isnan(data)
# update data
data, self = update_data_with_plot_inps(data, self.atr, self)
# prepare figure
subplot_kw = dict(projection=self.map_proj_obj) if self.map_proj_obj is not None else {}
fig, ax = plt.subplots(figsize=self.fig_size, num='Figure', subplot_kw=subplot_kw)
if not self.disp_whitespace:
fig.subplots_adjust(left=0,right=1,bottom=0,top=1)
# plot
self = plot_slice(ax, data, self.atr, self)[1]
# Save figure
if self.save_fig:
a = self.outfile[0]
vprint('save figure to {} with dpi={}'.format(os.path.abspath(self.outfile[0]), self.fig_dpi))
if not self.disp_whitespace:
fig.savefig(self.outfile[0], transparent=True, dpi=self.fig_dpi, pad_inches=0.0)
else:
fig.savefig(self.outfile[0], transparent=True, dpi=self.fig_dpi, bbox_inches='tight')
if not self.disp_fig:
fig.clf()
# Multiple Subplots
else:
# warn single-subplot options
opt_names = ['--show-gps', '--coastline', '--lalo-label', '--lalo-step', '--scalebar',
'--pts-yx', '--pts-lalo', '--pts-file']
opt_names = list(set(opt_names) & set(self.iargs))
for opt_name in opt_names:
print('WARNING: {} is NOT supported for multi-subplots, ignore it and continue.'.format(opt_name))
# prepare
self = prepare4multi_subplots(self, metadata=self.atr)
# plot
self.dlim_all = [0., 0.]
for j in range(1, self.fig_num + 1):
plot_figure(j, self, metadata=self.atr)
# stat
if self.fig_num > 1:
vprint('----------------------------------------')
vprint('all data range: {} {}'.format(self.dlim_all, self.disp_unit))
if self.vlim:
vprint('display range: {} {}'.format(self.vlim, self.disp_unit))
# Display Figure
if self.disp_fig:
vprint('showing ...')
plt.show()
return
######################################### Main Function ########################################
def view_main(iargs=None):
obj = viewer(iargs=iargs)
obj.configure()
if obj.flag == 'run':
obj.plot()
return
##################################################################################################
if __name__ == '__main__':
# sys.argv.extend(['I:\MicroWorkspace\C-SAR\Deformation\Input\geo\geo_timeseries_ERA5_ramp_demErr.h5','--nodisplay'])
# sys.argv.extend(['geo_velocity.h5', 'velocity', '--save','--nodisplay'])
view_main(sys.argv[1:])
EXAMPLE = """example:
view.py velocity.h5
view.py velocity.h5 velocity --wrap --wrap-range -2 2 -c cmy --lalo-label
view.py velocity.h5 --ref-yx 210 566 #change reference pixel for display
view.py velocity.h5 --sub-lat 31.05 31.10 --sub-lon 130.05 130.10 #subset in lalo / yx
view.py timeseries.h5
view.py timeseries.h5 -m no #do not use auto mask
view.py timeseries.h5 --ref-date 20101120 #change reference date
view.py timeseries.h5 --ex drop_date.txt #exclude dates to plot
view.py timeseries.h5 '*2017*' '*2018*' #all acquisitions in 2017 and 2018
view.py timeseries.h5 20200616_20200908 #reconstruct interferogram on the fly
view.py ifgramStack.h5 coherence
view.py ifgramStack.h5 unwrapPhase- #unwrapPhase only in the presence of unwrapPhase_bridging
view.py ifgramStack.h5 -n 6 #the 6th slice
view.py ifgramStack.h5 20171010_20171115 #all data related with 20171010_20171115
view.py ifgramStack.h5 'coherence*20171010*' #all coherence related with 20171010
view.py ifgramStack.h5 unwrapPhase-20070927_20100217 --zero-mask --wrap #wrapped phase
view.py ifgramStack.h5 unwrapPhase-20070927_20100217 --mask ifgramStack.h5 #mask using connected components
# GPS (for one subplot in geo-coordinates only)
view.py geo_velocity_msk.h5 velocity --show-gps --gps-label #show locations of available GPS
view.py geo_velocity_msk.h5 velocity --show-gps --gps-comp enu2los --ref-gps GV01
view.py geo_timeseries_ERA5_ramp_demErr.h5 20180619 --ref-date 20141213 --show-gps --gps-comp enu2los --ref-gps GV01
# Save and Output
view.py velocity.h5 --save
view.py velocity.h5 --nodisplay
view.py geo_velocity.h5 velocity --nowhitespace
"""