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A Novel Phase Unwrapping Method
Based on Network Programming

Mario Costantini

Abstract— Phase unwrapping is the reconstruction of a func-
tion on a grid given its values mod 2�. Phase unwrapping is a
key problem in all quantitative applications of synthetic aperture
radar (SAR) interferometry, but also in other fields. A new
phase unwrapping method, which is a different approach from
existing techniques, is described and tested. The method starts
from the fact that the phase differences of neighboring pixels can
be estimated with a potential error that is an integer multiple
of 2�. This suggests the formulation of the phase unwrapping
problem as a global minimization problem with integer variables.
Recognizing the network structure underlying the problem makes
for an efficient solution. In fact, it is possible to equate the phase
unwrapping problem to the problem of finding the minimum cost
flow on a network, for the solution of which there exist very
efficient techniques. The tests performed on real and simulated
interferometric SAR data confirm the validity of our approach.

Index Terms—Minimum cost network flow, phase unwrapping,
network programming, SAR interferometry.

I. INTRODUCTION

PHASE unwrapping is the reconstruction of a function on
a grid given the value mod 2of the function on the

grid. We will refer to these two functions as the unwrapped
and wrapped phases, respectively, while we will often refer to
grid points as pixels or simply points. In the last few years,
an increasing interest has been devoted to phase unwrapping,
mainly due to the development of synthetic aperture radar
(SAR) interferometry [1], [2], although applications of phase
unwrapping can be found in several other fields [3]. We
will concentrate on two-dimensional (2-D) phase unwrapping,
which is the most interesting for applications.

Basically, all existing phase unwrapping techniques start
from the fact that it is possible to determine the discrete
“derivatives” of the unwrapped phase, that is, the neighboring
pixel differences, when these differences are less thanin
absolute value. From the discrete derivatives, the unwrapped
phase can be reconstructed up to an additive constant. The
methods differ in the way they overcome the difficulty posed
by the fact that the hypothesis above may be false at some
points. This causes the estimated unwrapped phase discrete
derivatives to be inconsistent, that is, they do not form an
“irrotational” vector field.

Branch-cut methods [4] unwrap by “integrating” the es-
timated discrete partial derivatives of the unwrapped phase
along paths where the integration give self-consistent results.
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The allowed integration paths are delimited by cuts, which
cannot be crossed, made between the local inconsistencies
of the estimated discrete partial derivatives. The problem of
building these cuts is not solved by a global approach, which
can prevent these methods from being robust.

In least-squares methods [5]–[7], unwrapping is achieved by
minimizing the mean square deviation between the estimated
and unknown discrete derivatives of the unwrapped phase.
Least-squares methods are very efficient computationally when
they make use of fast Fourier transform (FFT) techniques [8],
[9]. The resulting unwrapping is not very accurate, however,
because least-squares procedures tend to spread the errors
rather than containing them within a limited set of points.
To overcome this problem, a weighting of the wrapped phase
can be useful [9], [10]. However, the weighted least-squares
algorithms proposed are iterative and not as efficient as the un-
weighted ones. Moreover, the accuracy of the results depends
critically on the weighting mask used.

Recently it has been recognized that choosing the
norm with instead of the mean square (which is
the norm) as the error criterion can reduce the spread
of errors [11]. However, the iterative procedure proposed
is not computationally efficient and does not allow external
weighting. Other investigations have pointed out how more
sophisticated estimations of the discrete derivatives of the
unwrapped phase can reduce unwrapping errors [12]. Finally,
it is worth mentioning that a different unwrapping approach
has been proposed for the case in which several related SAR
interferometric data sets are available [13].

Here we propose a new method for phase unwrapping that
we have recently developed [14], [15]. The method exploits
the fact that the discrete derivatives of the unwrapped phase
are estimated with possibly an error that is an integer multiple
of 2 . This leads to formulating the phase unwrapping problem
as a global minimization problem with integer variables: the
weighted deviation between the estimated and the unknown
discrete derivatives of the unwrapped phase is minimized,
subject to the constraint that the two functions must differ
by integer multiples of 2. With this constraint, the spread
of errors is prevented and the resultant unwrapped phase is
identical to the original wrapped phase when rewrapped; in
addition, the unwrapping results are less sensitive to slight
changes of the weighting mask used.

Minimization problems with integer variables are usually
very complex computationally. However, recognizing the net-
work structure underlying our problem makes it possible to
employ very efficient strategies for its solution. In fact, by
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choosing the weighted norm as the error criterion, the phase
unwrapping problem can be equated to the problem of finding
the minimum cost flow on a network, for the solution of which
there exist very efficient algorithms [16].

Our phase unwrapping method has been tested on simu-
lated and real SAR interferometric data. The results are very
encouraging and demonstrate the robustness, accuracy, and
efficiency of the method.

The phase unwrapping algorithm proposed is described in
Section II. In Section III, we report the results of some
validation tests performed. In Section IV, we briefly draw
some conclusions.

II. PHASE UNWRAPPING METHOD

Let us establish some notation and a preliminary math-
ematical framework. Let be a rectangular grid of points

such that and .
Moreover, let be the subset of the such that

and , whereas is the subset
corresponding to and ,
and is the subset corresponding to and

. We define for any real “function”
, its discrete partial “derivatives” to be

(1)

(2)

It is easy to see that given two real valued functions
and there exists a real valued

function such that

(3)

(4)

if and only if

(5)
The condition expressed in (5) is the equivalent on a discrete
space of the property that the gradient of a function is an
irrotational vector field. When (5) holds, the function

is determined unambiguously up to an additive real
constant by “integrating” the functions
and according to an integration formula
such as the following (a different integration path would give
the same result):

(6)

Consider now a real-valued function and let

(7)

where are the integers such that .
We refer to and as the unwrapped

and the wrapped phase functions, respectively. The inversion
of (7), that is, the reconstruction of from

, is the 2-D phase unwrapping process.
We define preliminary estimates of the discrete partial

derivatives of the unwrapped phase according to

(8)

(9)

where and are integers selected based ona
priori knowledge so that for most of

and for most of .
For example, when it is assumed that there are not many big
value jumps between neighboring points of the unwrapped
phase function , the simplest option is to
choose and to
have and , respectively:
in fact, in this case it follows from (7)–(9) that

when and
when .

In general, the functions and
cannot be consistently interpreted as discrete

partial derivatives of the unwrapped phase because they do not
fulfill the irrotational property (5). It is convenient to restate
the phase unwrapping problem of inverting (7) as the problem
of finding the following discrete derivative residuals:

(10)

(11)

From the residuals and
, the discrete partial derivatives and

are determined; the phase can then be
reconstructed, for example, according to (6), up to an additive
constant that is an integer multiple of 2. The reader familiar
with branch-cut unwrapping method terminology [4] should
note that the points where the functions
and do not fulfill the irrotational property
(5) are usually called residues, while the nonzero discrete
derivative residuals and

identify the branch cuts.
Let and be

nonnegative real numbers weighting thea priori confidence
that the residuals and , respectively, must
be small; that is, weighting the reliability of and

as estimates of and , respectively.
Even when no independent knowledge is available, it can
be useful to define weights based on information extracted
from the data to be unwrapped themselves. For example,

and could reflect the
consistency of and , respectively, as discrete
partial derivatives of a function, that is, if and
satisfy the irrotational property (5).

We can estimate the residuals and
as the solution of the following mini-
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mization problem:

(12)

subject to the constraints

(13)

integer (14)

integer (15)

The objective function to be minimized in (12) comes from
the assumption made in (8) and (9), which implies that
the residuals to be estimated and

are almost always zero. The weighted
sum of the absolute values of the variables, which is the
weighted norm, is chosen as the error criterion because
it allows an efficient solution of the minimization problem
through the transformation shown below. The constraints in
(13) express the property that

and are discrete
partial derivatives of a function (the unknown function

), which results from (10) and (11). These constraints
ensure that the discrete partial derivatives of the unwrapped
phase estimated from the solution of the minimization problem
satisfy the irrotational property (5). Note that the right-hand
side of (13) is different from zero when (5) is not satisfied by
the discrete partial derivatives preliminary estimates

and . The constraints in (14)
and (15) originate from the fact that and

take integer values, as can be seen from
(7)–(11). As a consequence, the spread of errors is prevented
and the unwrapped phase achievable from the solution of the
problem above is identical to the original wrapped phase when
rewrapped. Moreover, by allowing only integer values to the
variables, the solution of the minimization problem is less
sensitive to a small change of the weights
and used in (12).

The problem defined in (12)–(15) is a nonlinear minimiza-
tion problem with integer variables. We will see that its
solution can be found efficiently by solving the following
problem:

(16)

Fig. 1. Network associated with the phase unwrapping problem (the circles
and the arrows represent the nodes and the arcs of the network, respectively;
the boundary arcs are connected to the “earth”—by analogy with electrical
networks—node; the crosses denote the phase grid points).

subject to the constraints

(17)

(18)

(19)

The problem stated in (16)–(19) is a linear minimization
problem with real variables. Moreover, it expresses a minimum
cost flow problem on a network. In fact, consider the network
consisting of an earth node plus the nodes labeled by

, with two arcs connecting each pair of nodes
in the two directions (Fig. 1). Let the variables
and describe the flow along the arcs
from node to node and from node
to node , respectively, while the variables
and describe the flow along the arcs
from node to node and from node
to node , respectively, where the nodes with indexes

correspond to the earth node. Moreover, let
be the unit cost of the flows and ,

whereas is the unit cost of the flows
and . Then, the objective function in (16)

is the total cost of the flow. The constraints in (17) express
the conservation of flow at nodes , with the right-
hand side indicating (depending on whether it is positive or
negative) the flow supply or demand at the nodes. Note that
the elements of the right-hand side of (17) are integer, as can
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be deduced from (8) and (9). Finally, the constraints in (18)
and (19) define the capacities of the arcs.

The solution to the original minimization problem defined in
(12)–(15) corresponds to a solution of the minimum cost net-
work flow problem stated in (16)–(19) through the following
change of variables:

(20)

(21)

In fact, it can be seen that the minimum cost network flow
problem given in (16)–(19) has a solution at which at least one
variable in each of the pairs and

is zero, while all the variables
and

are integer. The first property can be easily demonstrated,
and it becomes evident when you interpret and

, like and , as
opposite flows between two nodes. The second property can be
demonstrated in the framework of the network programming
theory and is related to the unimodularity of the matrix that
can be associated to the constraints defined in (17) (see [16,
Sections 9.6 and 11.12]). Note that the variables and

, as the variables and
, could be assigned different costs in (16). In view

of (20) and (21), this would correspond to a different weighting
of the possibilities that the residuals to be estimated

and are positive or negative.
The minimum cost network flow problem stated in (16)–(19)

can be solved very efficiently, both regarding the memory and
the computation required. Many different efficient strategies
can be used to solve minimum cost flow problems on a
network, and their description would go beyond the scope
of this paper (see [16, chs. 9–11]). Further investigations are
needed to choose the most efficient minimum cost network
flow algorithm for the phase unwrapping problem. In addition,
the computational efficiency of our phase unwrapping method
can be optimized by developing an algorithm that exploits the
properties of the specific minimum cost network flow problem
arising in phase unwrapping.

Let , and be
nonnegative integer numbers. It should be noted that, when
useful, it is possible to add to the minimization problem
defined in (12)–(15) the following constraints:

(22)

(23)

and the corresponding arc capacity constraints

(24)

(25)

to the minimum cost network flow problem given in (16)–(19).
These or other supplementary constraints could reflecta priori
considerations, or could be useful in speeding the computation.

(a)

(b)

Fig. 2. (a) Wrapped phase simulating the interferometric phase obtained
from the September 5 and 6, 1995, ERS-1 and ERS-2 SAR images of the Etna
volcano, Sicily, Italy (the image size is 1644� 1938 pixels; the grayscale
represents the interval[��; �]). (b) Real data corresponding to those simulated
in (a).

Finally, it is important to note that, to process large data sets,
it can be useful to subdivide the data into more manageable
blocks that partially overlap. The minimum cost network flow
problem can be solved sequentially in each of the blocks,
subject to the boundary conditions imposed by the solution
found in the blocks already processed to ensure that (17)
holds globally. For example, suppose that theth block,

, consists of the subset of the grid points
and such that

and . Suppose that the blocks
are processed sequentially from the block with the smallest

and to that with the largest. Let
and be the subsets of the block

grid points such that
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Fig. 3. Amplitude of the coherence of the interferometric phase shown in
Fig. 2 (the grayscale represents the interval [0,1]).

and
, respectively, and such that they also belong

to blocks already processed. Therefore, the solutions
and

have already been found for the variables
and , respectively. Then, for theth block,
a minimum cost network flow problem analogous to the one
stated in (16)–(19) can be defined, but with the addition of
constraints

(26)

(27)

The sequential solution of these minimum cost network flow
problems for all the blocks can give a
suboptimal solution of the global problem for virtually sized
unlimited data with a fixed memory requirement, and with
computational time linearly increasing with the size. In order
for this decomposition to work, it is useful that the size of
the blocks and their overlap are not too small. The block size
should be sufficiently large to prevent incorrect preliminary
estimates (8), (9) of the unwrapped phase discrete partial
derivatives from cutting a block in disconnected regions. The
overlap should allow the results to be discarded that are close
to the boundaries of a block; these results are less reliable
because less data are available to be unwrapped consistently.

III. V ALIDATION TESTS

SAR interferometry provides one of the most difficult and
interesting applications of phase unwrapping. We have tested
our algorithm on simulated and real SAR interferometric
phases. The simulated data allow a precise quantitative valida-
tion of the unwrapping method, while the real data are useful
to verify the robustness of the algorithm in a less controlled

(a)

(b)

Fig. 4. (a) Inconsistencies (“residues”) in the preliminary estimates (8), (9)
of the discrete partial derivatives of the unwrapped phase for the data of
Fig. 2(a) (in white are the points where the irrotational property (5) is not
satisfied by these preliminary estimates; the dashed rectangle identifies the
area enlarged in Fig. 5). (b) Same as (a), but referring to Fig. 2(b).

situation. Both the simulated and real interferometric phases
to be unwrapped (Fig. 2) have been generated by means of
the interferometric processor DIAPASON [17], starting from
the SAR images taken on September 5 and 6, 1995, by the
ERS-1 and ERS-2 satellites over the Etna volcano, Sicily,
Italy, and using a digital elevation model (DEM) of the same
region produced from SPOT satellite optical images. The
interferometric phase data consist of 16441938 pixels of
size 15.81 39.86 m (2 10 looks) in the across and
the along-track directions, respectively, which corresponds to
an observed scene of about 66 77 km . The simulated
phase has been made more realistic by introducing noise based
on the amplitude of the coherence of the corresponding real
interferometric phase (Fig. 3), that is, the amplitude of the
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(a) (b)

(c) (d)

Fig. 5. (a) Dashed area of Fig. 4(a) enlarged. (b) Dashed area of Fig. 4(b)
enlarged. (c) Discrete derivative residuals (10), (11) (“cuts”) for the data of
Fig. 2(a) estimated by solving the minimization problem given in (12)–(15)
(in white are the points corresponding to nonzero residuals). (d) Same as (c),
but referring to Fig. 2(b).

correlation coefficient of the complex images from which the
interferometric phase is derived. This amplitude is related to
the error standard deviation of the phase [18].

For both the simulated and real data, preliminary estimates
of the discrete partial derivatives of the unwrapped phase
have been calculated according to (8) and (9), with

and chosen to have
and , respectively. Many

inconsistencies can be noted in these preliminary estimates of
the unwrapped phase discrete partial derivatives (Fig. 4); that
is, they do not satisfy the irrotational property (5). The errors
in these preliminary estimates can be related to well-known
phenomena in SAR interferometry. In particular, there is low
coherence at the left corner of the image (corresponding to the
sea) and at the right side (corresponding to mountains), while
layover structures are recognizable at the right side and at the
center, corresponding to peaks of mountains and the volcano.

The inconsistencies in the preliminary estimates (8), (9)
of the unwrapped phase discrete partial derivatives can be
overcome by solving the minimization problem defined in
(12)–(15) to determine where these estimates must be wrong;
that is, where the derivative residuals (10), (11) are found to be
different from zero because the discrete partial derivatives of
the unwrapped phase must be greater thanin absolute value
(Fig. 5). We have chosen the weights
and in (12) to reflect the amplitude of
the coherence of the interferometric phase (Fig. 3); moreover,
the weights have been set to zero when the corresponding
preliminary estimates (8), (9) of the unwrapped phase discrete

(a)

(b)

Fig. 6. (a) Phase of Fig. 2(a) unwrapped by integrating, according to (6),
its discrete partial derivatives determined by substituting in (10) and (11) the
residuals that solve the minimization problem given in (12)–(15) (the color
scale represents the interval [0, 234.55]). (b) Same as (a), but referring to
Fig. 2(b) (the dashed rectangle identifies the area shown in Fig. 11).

partial derivatives do not satisfy the irrotational property (5)
and then gradually increased in the neighborhood of these
points. Note that the latter weighting is defined based on the
phase data themselves; it has been found that this weighting
is able to guarantee good unwrapping results on its own
when no external information like phase coherence is available
for weighting. However, further tests and investigations can
be useful to find the best weighting. A discussion on the
problem of selecting the weights for the analogous least-
squares minimization problem can be found in [10].

The solution to the problem given in (12)–(15) is found,
through (20) and (21), by solving the minimum cost network
flow problem stated in (16)–(19). We have not enforced the
constraints stated in (22) and (23) or (24) and (25): further tests
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Fig. 7. Difference between the reconstructed unwrapped phase of Fig. 6(a)
and the corresponding simulated unwrapped phase (the grayscale represents
the interval [�6�; 6�]).

TABLE I
STATISTICS OF THE PHASE UNWRAPPINGERROR SHOWN IN FIG. 7 (PIXEL

PERCENTAGECORRESPONDING TODIFFERENT ABSOLUTE VALUES OF THE DATA)

Absolute Error 0 2� 4� �6�

Pixel Percentage 98.46 1.04 0.30 0.20

Fig. 8. Difference between the reconstructed unwrapped phase of Fig. 6(b)
and the noise-free simulated unwrapped phase (the grayscale represents the
interval [�6�; 6�]; the contour lines are spaced at 2� intervals).

are needed to establish when they can be useful. To check the
reliability of the block decomposition described in (26) and
(27), we have split the data in four equal blocks, with the
blocks overlapping by 25% of their size.

Then (Fig. 6), the unwrapped phase is reconstructed up to
an additive constant integer multiple of 2by integrating,
according to (6), the discrete partial derivatives calculated by

Fig. 9. Wrapped difference between the real wrapped phase of Fig. 2(b) and
the noise-free version of the simulated wrapped phase shown in Fig. 2(a) (the
grayscale represents the interval[��; �]).

Fig. 10. Difference between the phase of Fig. 9 unwrapped with our al-
gorithm and the data of Fig. 8 (the grayscale represents the internal [�6�;
6�]).

substituting in (10) and (11) the derivative residuals that solve
the minimization problem stated in (12)–(15). We remember
that the reconstructed unwrapped phase is identical to the
original wrapped phase when rewrapped.

We have implemented two different minimum cost network
flow algorithms in our phase unwrapping software: the CPLEX
[19] network simplex algorithm (see [16, ch. 11] for a descrip-
tion of the network simplex method) and the RELAX [20]
relaxation algorithm (see also [16, Section 9.10]). With the
experimental setup chosen, unwrapping the 16441938 pixel
data on a Silicon Graphics Power Onyx RE2 (using one R8000
CPU rated at about 300 MFlops, 75 MHz) took approximately
2 h when using the CPLEX software and 2 min with the
RELAX algorithm. Note, however, that the time needed with
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Fig. 11. Dashed area of Fig. 6(b) (perspective view; the grayscale represents the amplitude of the corresponding complex interferogram).

TABLE II
STATISTICS OF THE PHASE UNWRAPPINGERROR SHOWN IN FIG. 10 (PIXEL

PERCENTAGECORRESPONDING TODIFFERENT ABSOLUTE VALUES OF THE DATA)

Absolute Error 0 2� 4� �6�

Pixel Percentage 97.91 1.67 0.26 0.16

the relaxation algorithm can vary significantly depending on
the data. Of course, the computational time for unwrapping
increases linearly with the data size when subdividing the
data in blocks of fixed size; tests performed without using a
block subdivision have indicated that the time is approximately

and , where is the number of pix-
els, with the CPLEX and the RELAX software, respectively. It
is possible that even better performance can be obtained with
different minimum cost network flow algorithms, in particular,
if specifically optimized for the phase unwrapping minimum
cost network flow problem.

To quantify the accuracy of the reconstructed unwrapped
phase, we have calculated the difference between this and
the known simulated one. Of course, the noisy version of
the simulated phase has been used for comparison with the
unwrapped phase reconstructed from the simulated data, while
the noise-free version has been compared with the unwrapped
phase reconstructed from the real data. When unwrapping the
simulated phase, the error committed (Fig. 7 and Table I) is
concentrated in layover and very low coherence areas, where
interferometry does not furnish accurate phase information and
the density of inconsistencies in the preliminary estimates (8),
(9) of the unwrapped phase discrete partial derivatives is very

high; in addition, these areas are located at the boundaries of
the image, where less data have to be unwrapped consistently
and the results are therefore less reliable. For the large majority
of pixels, the error is zero.

In the case of the real data, the difference between the
unwrapped phase and the noise-free version of the simulated
unwrapped phase is greater than half a cycle for a large
portion of the data (Fig. 8). However, this difference is not
due to phase unwrapping errors, but it already exists between
the real wrapped phase and the noise-free version of the
simulated wrapped phase (Fig. 9). The discrepancy arises from
a combination of the inaccuracy of the DEM and satellite
orbits used for the simulation as well as atmospheric artifacts
affecting the real interferometric phase. In fact, the difference
between the unwrapped real interferometric phase and the
noise-free simulated unwrapped phase matches very well
with the wrapped difference between the real and the noise-
free simulated wrapped phases (compare Figs. 8 and 9). A
more quantitative estimation of the unwrapping error for the
real interferometric phase can be obtained by unwrapping
this wrapped difference and comparing the result with the
difference between the unwrapped phase and the noise-free
simulated unwrapped phase (Fig. 10 and Table II). This again
gives strong evidence that the unwrapping error is concentrated
in the same layover and very low coherence areas at the
boundaries of the image as for the simulated data, while it
is zero for the large majority of pixels.

Finally, we show a perspective view of the unwrapped real
phase (Fig. 11) to give just an indication of one of the main
applications of phase unwrapping in SAR interferometry; that
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is, the reconstruction of the elevation of the observed scene,
which is related to the value of the unwrapped phase [1], [2].

IV. CONCLUSION

We propose a new method for automated phase unwrapping
that has been shown to be accurate and efficient. The key
points are to formulate the phase unwrapping problem ex-
ploiting globally its integer qualities, which ensures accurate
results, and to recognize the network structure underlying our
formulation of the phase unwrapping problem, which makes
for an efficient solution. The tests performed demonstrate the
validity of this approach.
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