RasterProcessTool/Toolbox/SimulationSARTool/SimulationSAR/TBPImageAlgCls.cpp

614 lines
24 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#include "stdafx.h"
#include "TBPImageAlgCls.h"
#include <QDateTime>
#include <QDebug>
#include <QString>
#include <cmath>
#include <QProgressDialog>
#include <QMessageBox>
#include "GPUTool.cuh"
#include "GPUTBPImage.cuh"
#include "ImageOperatorBase.h"
void CreatePixelXYZ(std::shared_ptr<EchoL0Dataset> echoL0ds, QString outPixelXYZPath)
{
long bandwidth = echoL0ds->getBandwidth();
double Rnear = echoL0ds->getNearRange();
double Rfar = echoL0ds->getFarRange();
double refRange = echoL0ds->getRefPhaseRange();
double dx = LIGHTSPEED / 2.0 / bandwidth; // c/2b
// ´´½¨×ø±êϵͳ
long prfcount = echoL0ds->getPluseCount();
long freqcount = echoL0ds->getPlusePoints();
Eigen::MatrixXd gt = Eigen::MatrixXd::Zero(2, 3);
gt(0, 0) = 0;
gt(0, 1) = 1;
gt(0, 2) = 0;
gt(1, 0) = 0;
gt(1, 1) = 0;
gt(1, 2) = 1;
gdalImage xyzRaster = CreategdalImage(outPixelXYZPath, prfcount, freqcount, 3, gt, QString(""), false, true,true,GDT_Float64);
std::shared_ptr<double> antpos = echoL0ds->getAntPos();
dx = (echoL0ds->getFarRange()-echoL0ds->getNearRange())/(echoL0ds->getPlusePoints()-1);
Rnear = echoL0ds->getNearRange();
double Rref = echoL0ds->getRefPhaseRange();
double centerInc = echoL0ds->getCenterAngle()*d2r;
long echocol = Memory1GB * 1.0 / 8 / 4 / prfcount * 6;
qDebug() << "echocol:\t " << echocol ;
echocol = echocol < 1 ? 1: echocol;
std::shared_ptr<double> Pxs((double*)mallocCUDAHost(sizeof(double)*prfcount), FreeCUDAHost);
std::shared_ptr<double> Pys((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> Pzs((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> AntDirectX((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> AntDirectY((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> AntDirectZ((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
{
std::shared_ptr<double> antpos = echoL0ds->getAntPos();
double time = 0;
double Px = 0;
double Py = 0;
double Pz = 0;
for (long i = 0; i < prfcount; i++) {
Pxs.get()[i] = antpos.get()[i * 19 + 1]; // ÎÀÐÇ×ø±ê
Pys.get()[i] = antpos.get()[i * 19 + 2];
Pzs.get()[i] = antpos.get()[i * 19 + 3];
AntDirectX.get()[i] = antpos.get()[i * 19 + 13];// zero doppler
AntDirectY.get()[i] = antpos.get()[i * 19 + 14];
AntDirectZ.get()[i] = antpos.get()[i * 19 + 15];
double NormAnt = std::sqrt(AntDirectX.get()[i] * AntDirectX.get()[i] +
AntDirectY.get()[i] * AntDirectY.get()[i] +
AntDirectZ.get()[i] * AntDirectZ.get()[i]);
AntDirectX.get()[i] = AntDirectX.get()[i] / NormAnt;
AntDirectY.get()[i] = AntDirectY.get()[i] / NormAnt;
AntDirectZ.get()[i] = AntDirectZ.get()[i] / NormAnt;// ¹éÒ»»¯
}
antpos.reset();
}
std::shared_ptr<double> d_Pxs((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_Pys((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_Pzs((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_AntDirectX((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_AntDirectY((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_AntDirectZ((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
HostToDevice(Pxs.get(), d_Pxs.get(), sizeof(double) * prfcount);
HostToDevice(Pys.get(), d_Pys.get(), sizeof(double) * prfcount);
HostToDevice(Pzs.get(), d_Pzs.get(), sizeof(double) * prfcount);
HostToDevice(AntDirectX.get(), d_AntDirectX.get(), sizeof(double) * prfcount);
HostToDevice(AntDirectY.get(), d_AntDirectY.get(), sizeof(double) * prfcount);
HostToDevice(AntDirectZ.get(), d_AntDirectZ.get(), sizeof(double) * prfcount);
for (long startcolidx = 0; startcolidx < freqcount; startcolidx = startcolidx + echocol) {
long tempechocol = echocol;
if (startcolidx + tempechocol >= freqcount) {
tempechocol = freqcount - startcolidx;
}
qDebug() << "\r[" << QDateTime::currentDateTime().toString("yyyy-MM-dd hh:mm:ss.zzz") << "] imgxyz :\t" << startcolidx << "\t-\t" << startcolidx + tempechocol << " / " << freqcount ;
std::shared_ptr<double> demx = readDataArr<double>(xyzRaster, 0, startcolidx, prfcount, tempechocol, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> demy = readDataArr<double>(xyzRaster, 0, startcolidx, prfcount, tempechocol, 2, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> demz = readDataArr<double>(xyzRaster, 0, startcolidx, prfcount, tempechocol, 3, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> h_demx((double*)mallocCUDAHost(sizeof(double) * prfcount*tempechocol), FreeCUDAHost);
std::shared_ptr<double> h_demy((double*)mallocCUDAHost(sizeof(double) * prfcount*tempechocol), FreeCUDAHost);
std::shared_ptr<double> h_demz((double*)mallocCUDAHost(sizeof(double) * prfcount*tempechocol), FreeCUDAHost);
#pragma omp parallel for
for (long ii = 0; ii < prfcount; ii++) {
for (long jj = 0; jj < tempechocol; jj++) {
h_demx.get()[ii*tempechocol+jj]=demx.get()[ii*tempechocol+jj];
h_demy.get()[ii*tempechocol+jj]=demy.get()[ii*tempechocol+jj];
h_demz.get()[ii*tempechocol+jj]=demz.get()[ii*tempechocol+jj];
}
}
std::shared_ptr<double> d_demx((double*)mallocCUDADevice(sizeof(double) * prfcount * tempechocol), FreeCUDADevice);
std::shared_ptr<double> d_demy((double*)mallocCUDADevice(sizeof(double) * prfcount * tempechocol), FreeCUDADevice);
std::shared_ptr<double> d_demz((double*)mallocCUDADevice(sizeof(double) * prfcount * tempechocol), FreeCUDADevice);
HostToDevice(h_demx.get(), d_demx.get(), sizeof(double) * prfcount * tempechocol);
HostToDevice(h_demy.get(), d_demy.get(), sizeof(double) * prfcount * tempechocol);
HostToDevice(h_demz.get(), d_demz.get(), sizeof(double) * prfcount * tempechocol);
TIMEBPCreateImageGrid(
d_Pxs.get(), d_Pys.get(), d_Pzs.get(),
d_AntDirectX.get(), d_AntDirectY.get(), d_AntDirectZ.get(),
d_demx.get(), d_demy.get(), d_demz.get(),
prfcount, tempechocol, 1000,
Rnear+dx* startcolidx, dx, refRange // ¸üÐÂ×î½üÐÞ¶Á
);
DeviceToHost(h_demx.get(), d_demx.get(), sizeof(double) * prfcount * tempechocol);
DeviceToHost(h_demy.get(), d_demy.get(), sizeof(double) * prfcount * tempechocol);
DeviceToHost(h_demz.get(), d_demz.get(), sizeof(double) * prfcount * tempechocol);
#pragma omp parallel for
for (long ii = 0; ii < prfcount; ii++) {
for (long jj = 0; jj < tempechocol; jj++) {
demx.get()[ii * tempechocol + jj]=h_demx.get()[ii * tempechocol + jj] ;
demy.get()[ii * tempechocol + jj]=h_demy.get()[ii * tempechocol + jj] ;
demz.get()[ii * tempechocol + jj]=h_demz.get()[ii * tempechocol + jj] ;
}
}
xyzRaster.saveImage(demx, 0, startcolidx,prfcount,tempechocol, 1);
xyzRaster.saveImage(demy, 0, startcolidx,prfcount,tempechocol, 2);
xyzRaster.saveImage(demz, 0, startcolidx,prfcount,tempechocol, 3);
}
}
void TBPImageProcess(QString echofile, QString outImageFolder, QString imagePlanePath,long num_thread)
{
std::shared_ptr<EchoL0Dataset> echoL0ds(new EchoL0Dataset);
echoL0ds->Open(echofile);
std::shared_ptr< SARSimulationImageL1Dataset> imagL1(new SARSimulationImageL1Dataset);
imagL1->setCenterAngle(echoL0ds->getCenterAngle());
imagL1->setCenterFreq(echoL0ds->getCenterFreq());
imagL1->setNearRange(echoL0ds->getNearRange());
imagL1->setRefRange((echoL0ds->getNearRange() + echoL0ds->getFarRange()) / 2);
imagL1->setFarRange(echoL0ds->getFarRange());
imagL1->setFs(echoL0ds->getFs());
imagL1->setLookSide(echoL0ds->getLookSide());
imagL1->OpenOrNew(outImageFolder, echoL0ds->getSimulationTaskName(), echoL0ds->getPluseCount(), echoL0ds->getPlusePoints());
TBPImageAlgCls TBPimag;
TBPimag.setEchoL0(echoL0ds);
TBPimag.setImageL1(imagL1);
TBPimag.setImagePlanePath(imagePlanePath);
TBPimag.Process(num_thread);
}
void TBPImageAlgCls::setImagePlanePath(QString INimagePlanePath)
{
this->imagePlanePath = INimagePlanePath;
}
QString TBPImageAlgCls::getImagePlanePath()
{
return this->imagePlanePath;
}
void TBPImageAlgCls::setEchoL0(std::shared_ptr<EchoL0Dataset> inL0ds)
{
this->L0ds = inL0ds;
}
void TBPImageAlgCls::setImageL1(std::shared_ptr<SARSimulationImageL1Dataset> inL1ds)
{
this->L1ds = inL1ds;
}
std::shared_ptr<EchoL0Dataset> TBPImageAlgCls::getEchoL1()
{
return this->L0ds;
}
std::shared_ptr<SARSimulationImageL1Dataset> TBPImageAlgCls::getImageL0()
{
return this->L1ds;
}
ErrorCode TBPImageAlgCls::Process(long num_thread)
{
qDebug() << u8"¿ªÊ¼³ÉÏñ";
qDebug() << u8"´´½¨³ÉÏñÆ½ÃæµÄXYZ";
QString outRasterXYZ = JoinPath(this->L1ds->getoutFolderPath(), this->L0ds->getSimulationTaskName() + "_xyz.bin");
CreatePixelXYZ(this->L0ds, outRasterXYZ);
return this->ProcessWithGridNet(num_thread, outRasterXYZ);
}
ErrorCode TBPImageAlgCls::ProcessWithGridNet(long num_thread,QString xyzRasterPath)
{
this->outRasterXYZPath = xyzRasterPath;
qDebug() << u8"ƵÓò»Ø²¨-> ʱÓò»Ø²¨";
this->TimeEchoDataPath = JoinPath(this->L1ds->getoutFolderPath(), this->L0ds->getSimulationTaskName() + "_Timeecho.bin");
this->EchoFreqToTime();
// ³õʼ»¯Raster
qDebug() << u8"³õʼ»¯Ó°Ïñ";
long imageheight = this->L1ds->getrowCount();
long imagewidth = this->L1ds->getcolCount();
long blokline = Memory1GB / 8 / 4 / imageheight * 32;
blokline = blokline < 1000 ? 1000 : blokline;
long startline = 0;
for (startline = 0; startline < imageheight; startline = startline + blokline) {
long templine = blokline;
if (startline + templine >= imageheight) {
templine = imageheight - startline;
}
qDebug() << "\r[" << QDateTime::currentDateTime().toString("yyyy-MM-dd hh:mm:ss.zzz") << "] imgxyz :\t" << startline << "\t-\t" << startline + templine << " / " << imageheight;
std::shared_ptr<std::complex<double>> imageRaster = this->L1ds->getImageRaster(startline, templine);
for (long i = 0; i < templine; i++) {
for (long j = 0; j < imagewidth; j++) {
imageRaster.get()[i * imagewidth + j] = std::complex<double>(0, 0);
}
}
this->L1ds->saveImageRaster(imageRaster, startline, templine);
}
qDebug() << u8"ƵÓò»Ø²¨-> ʱÓò»Ø²¨ ½áÊø";
if (GPURUN) {
return this->ProcessGPU();
}
else {
QMessageBox::information(nullptr, u8"Ìáʾ", u8"Ŀǰֻ֧³ÖÏÔ¿¨");
return ErrorCode::FAIL;
}
return ErrorCode::SUCCESS;
}
ErrorCode TBPImageAlgCls::ProcessGPU()
{
// ³£ÓòÎÊý
long rowCount = this->L1ds->getrowCount();
long colCount = this->L1ds->getcolCount();
long pixelCount = rowCount * colCount;
long PRFCount = this->L0ds->getPluseCount();
long PlusePoints = this->L0ds->getPlusePoints();
long bandwidth = this->L0ds->getBandwidth();
double Rnear = this->L1ds->getNearRange();
double Rfar = this->L1ds->getFarRange();
double refRange = this->L0ds->getRefPhaseRange();
double dx = LIGHTSPEED / 2.0 / bandwidth; // c/2b
Rfar = Rnear + dx * (PlusePoints - 1); // ¸üÐÂб¾à¾àÀë
float freq = this->L1ds->getCenterFreq();
double factorj = freq * 4 * M_PI / LIGHTSPEED ;
qDebug() << "------------------------------------------------";
qDebug() << "TBP params:";
qDebug() << "Rnear:\t" << Rnear;
qDebug() << "Rfar:\t" << Rfar;
qDebug() << "refRange:\t" << this->getEchoL1()->getRefPhaseRange();
qDebug() << "dx:\t" << dx;
qDebug() << "freq:\t" << freq;
qDebug() << "rowCount:\t" << rowCount;
qDebug() << "colCount:\t" << colCount;
qDebug() << "PRFCount:\t" << PRFCount;
qDebug() << "PlusePoints:\t" << PlusePoints;
qDebug() << "bandwidth:\t" << bandwidth;
// ·´·½Ïò¼ÆËãÆðʼÏàλ
double deltaF = bandwidth / (PlusePoints - 1);
double startfreq = freq - bandwidth / 2;
double startlamda = LIGHTSPEED / startfreq;
qDebug() << "deltaF:\t" << deltaF;
std::shared_ptr<double> Pxs (new double[this->L0ds->getPluseCount()],delArrPtr);
std::shared_ptr<double> Pys (new double[this->L0ds->getPluseCount()],delArrPtr);
std::shared_ptr<double> Pzs (new double[this->L0ds->getPluseCount()],delArrPtr);
{
std::shared_ptr<double> antpos = this->L0ds->getAntPos();
double time = 0;
double Px = 0;
double Py = 0;
double Pz = 0;
for (long i = 0; i < rowCount; i++) {
time = antpos.get()[i *19 + 0];
Px = antpos.get()[i *19 + 1];
Py = antpos.get()[i *19 + 2];
Pz = antpos.get()[i *19 + 3];
Pxs.get()[i] = Px;
Pys.get()[i] = Py;
Pzs.get()[i] = Pz;
}
antpos.reset();
}
// ¼ÆËã³ÉÏñµÄ»ù±¾²ÎÊý
// ¾àÀëÏò·Ö±æÂÊ
double dr = sqrt(pow(Pxs.get()[2]- Pxs.get()[1],2)+pow(Pys.get()[2] - Pys.get()[1],2)+pow(Pzs.get()[2] - Pzs.get()[1],2));
qDebug() << "------- resolution ----------------------------------";
qDebug() << "Range Resolution (m):\t" << dx ;
qDebug() << "Cross Resolution (m):\t" << dr;
qDebug() << "Range Range (m):\t" << dx*PlusePoints;
qDebug() << "Cross Range (m):\t" << dr*PRFCount;
qDebug() << "start Freq (Hz):\t" << startfreq;
qDebug() << "start lamda (m):\t" << startlamda;
qDebug() << "rowCount:\t" << rowCount;
qDebug() << "colCount:\t" << colCount;
qDebug() << "PRFCount:\t" << PRFCount;
qDebug() << "PlusePoints:\t" << PlusePoints;
qDebug() << "Rnear:\t" << Rnear;
qDebug() << "Rfar:\t" << Rfar;
qDebug() << "refRange:\t" << refRange;
// ·½Î»Ïò·Ö±æÂÊ
long echoBlockline = Memory1GB / 8 / 2 / PlusePoints * 2; //2GB
echoBlockline = echoBlockline < 1 ? 1 : echoBlockline;
long imageBlockline = Memory1GB / 8 / 2 / colCount * 2; //2GB
imageBlockline = imageBlockline < 1 ? 1 : imageBlockline;
gdalImage imageXYZ(this->outRasterXYZPath);
gdalImageComplex imagetimeimg(this->TimeEchoDataPath);
long startimgrowid = 0;
for (startimgrowid = 0; startimgrowid < rowCount; startimgrowid = startimgrowid + imageBlockline) {
long tempimgBlockline = imageBlockline;
if (startimgrowid + imageBlockline >= rowCount) {
tempimgBlockline = rowCount - startimgrowid;
}
qDebug() << "\r image create Row Range :\t"<<QString("[%1]").arg(startimgrowid*100.0/ rowCount)<< startimgrowid << "\t-\t" << startimgrowid + tempimgBlockline << "\t/\t" << rowCount;
// ÌáÈ¡¾Ö²¿pixel x,y,z
std::shared_ptr<double> img_x = readDataArr<double>(imageXYZ,startimgrowid,0,tempimgBlockline,colCount,1,GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> img_y = readDataArr<double>(imageXYZ,startimgrowid,0,tempimgBlockline,colCount,2,GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> img_z = readDataArr<double>(imageXYZ,startimgrowid,0,tempimgBlockline,colCount,3,GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<std::complex<double>> imgArr = this->L1ds->getImageRaster(startimgrowid, tempimgBlockline);
// »ñÈ¡»Ø²¨
long startechoid = 0;
long iffeechoLen = PlusePoints;
for (long startechoid = 0; startechoid < PRFCount; startechoid = startechoid + echoBlockline) {
long tempechoBlockline = echoBlockline;
if (startechoid + tempechoBlockline >= PRFCount) {
tempechoBlockline = PRFCount - startechoid;
}
std::shared_ptr<std::complex<double>> echoArr = readDataArrComplex < std::complex<double>>(imagetimeimg,startechoid,long(0), tempechoBlockline, iffeechoLen, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);//; this->L0ds->getEchoArr(startechoid, tempechoBlockline);
std::shared_ptr<double> antpx(new double[tempechoBlockline],delArrPtr);
std::shared_ptr<double> antpy(new double[tempechoBlockline], delArrPtr);
std::shared_ptr<double> antpz(new double[tempechoBlockline], delArrPtr);
for (long anti = 0; anti < tempechoBlockline; anti++) { // ÌìÏß×ø±ê
antpx.get()[anti] = Pxs.get()[anti + startechoid];
antpy.get()[anti] = Pys.get()[anti + startechoid];
antpz.get()[anti] = Pzs.get()[anti + startechoid];
}
TBPImageGPUAlg2(
antpx, antpy, antpz, // ×ø±ê
img_x, img_y, img_z, // ͼÏñ×ø±ê
echoArr, // »Ø²¨
imgArr, // ͼÏñ
startfreq, dx,
Rnear, Rfar, refRange,
tempimgBlockline, colCount,
tempechoBlockline, PlusePoints
);
qDebug() << QString(" image block PRF:[%1] \t").arg((startechoid + tempechoBlockline) * 100.0 / PRFCount)
<< startechoid << "\t-\t" << startechoid + tempechoBlockline;
}
this->L1ds->saveImageRaster(imgArr, startimgrowid, tempimgBlockline);
}
qDebug() << "\r[" << QDateTime::currentDateTime().toString("yyyy-MM-dd hh:mm:ss.zzz") << "] image writing:\t" << this->L1ds->getxmlFilePath();
this->L1ds->saveToXml();
return ErrorCode::SUCCESS;
}
void TBPImageGPUAlg2(std::shared_ptr<double> antPx, std::shared_ptr<double> antPy, std::shared_ptr<double> antPz,
std::shared_ptr<double> img_x, std::shared_ptr<double> img_y, std::shared_ptr<double> img_z,
std::shared_ptr<std::complex<double>> echoArr,
std::shared_ptr<std::complex<double>> img_arr,
double freq, double dx, double Rnear, double Rfar, double refRange,
long rowcount, long colcount,
long prfcount, long freqcount
)
{
// ÌìÏß
std::shared_ptr<double> h_antPx ((double*)mallocCUDAHost(sizeof(double) * prfcount),FreeCUDAHost);
std::shared_ptr<double> h_antPy ((double*)mallocCUDAHost(sizeof(double) * prfcount),FreeCUDAHost);
std::shared_ptr<double> h_antPz ((double*)mallocCUDAHost(sizeof(double) * prfcount),FreeCUDAHost);
std::shared_ptr<double> d_antPx ((double*)mallocCUDADevice(sizeof(double) * prfcount),FreeCUDADevice);
std::shared_ptr<double> d_antPy ((double*)mallocCUDADevice(sizeof(double) * prfcount),FreeCUDADevice);
std::shared_ptr<double> d_antPz ((double*)mallocCUDADevice(sizeof(double) * prfcount),FreeCUDADevice);
// Íø¸ñ×ø±ê
std::shared_ptr<double> h_imgx((double*)mallocCUDAHost(sizeof(double) * rowcount * colcount),FreeCUDAHost);
std::shared_ptr<double> h_imgy((double*)mallocCUDAHost(sizeof(double) * rowcount * colcount),FreeCUDAHost);
std::shared_ptr<double> h_imgz((double*)mallocCUDAHost(sizeof(double) * rowcount * colcount),FreeCUDAHost);
std::shared_ptr<double> d_imgx ((double*)mallocCUDADevice(sizeof(double) * rowcount * colcount),FreeCUDADevice);
std::shared_ptr<double> d_imgy ((double*)mallocCUDADevice(sizeof(double) * rowcount * colcount),FreeCUDADevice);
std::shared_ptr<double> d_imgz ((double*)mallocCUDADevice(sizeof(double) * rowcount * colcount),FreeCUDADevice);
// »Ø²¨·¶Î§
std::shared_ptr<cuComplex> h_echoArr((cuComplex*)mallocCUDAHost(sizeof(cuComplex) * prfcount * freqcount), FreeCUDAHost);
std::shared_ptr<cuComplex> d_echoArr((cuComplex*)mallocCUDADevice(sizeof(cuComplex) * prfcount * freqcount), FreeCUDADevice);
// ³ÉÏñ½á¹û
std::shared_ptr<cuComplex> h_imgArr((cuComplex*)mallocCUDAHost(sizeof(cuComplex) * rowcount * colcount), FreeCUDAHost);
std::shared_ptr<cuComplex> d_imgArr((cuComplex*)mallocCUDADevice(sizeof(cuComplex) * rowcount * colcount), FreeCUDADevice);
#pragma omp parallel for
for (long i = 0; i < prfcount; i++) {
for (long j = 0; j < freqcount; j++) {
h_echoArr.get()[i * freqcount + j] = make_cuComplex(echoArr.get()[i * freqcount + j].real(),
echoArr.get()[i * freqcount + j].imag());
}
}
// ÌìÏßλÖÃ
for (long i = 0; i < prfcount; i++) {
h_antPx.get()[i] = antPx.get()[i];
h_antPy.get()[i] = antPy.get()[i];
h_antPz.get()[i] = antPz.get()[i];
}
#pragma omp parallel for
for (long i = 0; i < rowcount; i++) {
for (long j = 0; j < colcount; j++) {
h_imgx.get()[i * colcount + j] = img_x.get()[i * colcount + j];
h_imgy.get()[i * colcount + j] = img_y.get()[i * colcount + j];
h_imgz.get()[i * colcount + j] = img_z.get()[i * colcount + j];
}
}
#pragma omp parallel for
for (long i = 0; i < rowcount; i++) {
for (long j = 0; j < colcount; j++) {
h_imgArr.get()[i * colcount + j].x = img_arr.get()[i * colcount + j].real();
h_imgArr.get()[i * colcount + j].y = img_arr.get()[i * colcount + j].imag();
}
}
HostToDevice(h_imgArr.get(), d_imgArr.get(), sizeof(cuComplex) * rowcount * colcount);
HostToDevice(h_echoArr.get(), d_echoArr.get(), sizeof(cuComplex) * prfcount * freqcount);
HostToDevice(h_antPx.get(), d_antPx.get(), sizeof(double) * prfcount);
HostToDevice(h_antPy.get(), d_antPy.get(), sizeof(double) * prfcount);
HostToDevice(h_antPz.get(), d_antPz.get(), sizeof(double) * prfcount);
HostToDevice(h_imgx.get(), d_imgx.get(), sizeof(double) * rowcount * colcount);
HostToDevice(h_imgy.get(), d_imgy.get(), sizeof(double) * rowcount * colcount);
HostToDevice(h_imgz.get(), d_imgz.get(), sizeof(double) * rowcount * colcount);
// Ö±½ÓʹÓÃ
double startlamda = LIGHTSPEED / freq;
TimeBPImage(
d_antPx.get(), d_antPy.get(), d_antPz.get(),
d_imgx.get(), d_imgy.get(), d_imgz.get(),
d_echoArr.get(), prfcount, freqcount,
d_imgArr.get(), rowcount, colcount,
startlamda, Rnear, dx, refRange,Rfar
);
// Device -> Host
DeviceToHost(h_imgArr.get(), d_imgArr.get(), sizeof(cuComplex)* rowcount* colcount);
#pragma omp parallel for
for (long i = 0; i < rowcount; i++) {
for (long j = 0; j < colcount; j++) {
img_arr.get()[i * colcount + j] = std::complex<double>(h_imgArr.get()[i * colcount + j].x, h_imgArr.get()[i * colcount + j].y);
}
}
}
void TBPImageAlgCls::setGPU(bool flag)
{
this->GPURUN = flag;
}
bool TBPImageAlgCls::getGPU( )
{
return this->GPURUN;
}
void TBPImageAlgCls::EchoFreqToTime()
{
// ¶ÁÈ¡Êý¾Ý
long PRFCount = this->L0ds->getPluseCount();
long inColCount = this->L0ds->getPlusePoints();
long outColCount = inColCount;// nextpow2(inColCount);
this->TimeEchoRowCount = PRFCount;
this->TimeEchoColCount = outColCount;
qDebug() << "IFFT : " << this->TimeEchoDataPath;
qDebug() << "PRF Count:\t" << PRFCount;
qDebug() << "inColCount:\t" << inColCount;
qDebug() << "outColCount:\t" << outColCount;
// ´´½¨¶þ½øÖÆÎļþ
gdalImageComplex outTimeEchoImg = CreategdalImageComplexNoProj(this->TimeEchoDataPath, this->TimeEchoRowCount, this->TimeEchoColCount, 1);
// ·Ö¿é
long echoBlockline = Memory1GB / 8 / 2 / outColCount * 3; //1GB
echoBlockline = echoBlockline < 1 ? 1 : echoBlockline;
long startechoid = 0;
for (long startechoid = 0; startechoid < PRFCount; startechoid = startechoid + echoBlockline) {
long tempechoBlockline = echoBlockline;
if (startechoid + tempechoBlockline >= PRFCount) {
tempechoBlockline = PRFCount - startechoid;
}
std::shared_ptr<std::complex<double>> echoArr = this->L0ds->getEchoArr(startechoid, tempechoBlockline);
std::shared_ptr<std::complex<double>> IFFTArr = outTimeEchoImg.getDataComplexSharePtr(startechoid, 0, tempechoBlockline, outColCount, 1);
std::shared_ptr<cuComplex> host_echoArr((cuComplex*)mallocCUDAHost(sizeof(cuComplex) * tempechoBlockline * outColCount), FreeCUDAHost);
std::shared_ptr<cuComplex> host_IFFTechoArr((cuComplex*)mallocCUDAHost(sizeof(cuComplex) * tempechoBlockline * outColCount), FreeCUDAHost);
memset(host_echoArr.get(), 0, sizeof(cuComplex) * tempechoBlockline * outColCount);
#pragma omp parallel for
for (long ii = 0; ii < tempechoBlockline; ii++) {
for (long jj = 0; jj < inColCount; jj++) {
host_echoArr.get()[ii * outColCount + jj] = make_cuComplex(echoArr.get()[ii * inColCount + jj].real(), echoArr.get()[ii * inColCount + jj].imag());
}
}
#pragma omp parallel for
for (long ii = 0; ii < tempechoBlockline * outColCount; ii++) {
host_IFFTechoArr.get()[ii] = make_cuComplex(0, 0);
}
std::shared_ptr<cuComplex> device_echoArr((cuComplex*)mallocCUDADevice(sizeof(cuComplex) * tempechoBlockline * inColCount), FreeCUDADevice);
std::shared_ptr<cuComplex> device_IFFTechoArr((cuComplex*)mallocCUDADevice(sizeof(cuComplex) * tempechoBlockline * outColCount), FreeCUDADevice);
HostToDevice(host_echoArr.get(), device_echoArr.get(), sizeof(cuComplex) * tempechoBlockline * inColCount);
HostToDevice(host_IFFTechoArr.get(), device_IFFTechoArr.get(), sizeof(cuComplex) * tempechoBlockline * outColCount);
CUDAIFFT(device_echoArr.get(), device_IFFTechoArr.get(), tempechoBlockline, outColCount, outColCount);
FFTShift1D(device_IFFTechoArr.get(), tempechoBlockline, outColCount);
DeviceToHost(host_IFFTechoArr.get(), device_IFFTechoArr.get(), sizeof(cuComplex) * tempechoBlockline * outColCount);
#pragma omp parallel for
for (long ii = 0; ii < tempechoBlockline; ii++) {
for (long jj = 0; jj < outColCount; jj++) {
IFFTArr.get()[ii * outColCount + jj] = std::complex<double>(host_IFFTechoArr.get()[ii * outColCount + jj].x, host_IFFTechoArr.get()[ii * outColCount + jj].y);
//IFFTArr.get()[ii * outColCount + jj] = std::complex<double>(host_echoArr.get()[ii * outColCount + jj].x, host_echoArr.get()[ii * outColCount + jj].y);
}
}
outTimeEchoImg.saveImage(IFFTArr, startechoid, 0, tempechoBlockline, outColCount, 1);
qDebug() << QString(" image block PRF:[%1] \t").arg((startechoid + tempechoBlockline) * 100.0 / PRFCount)
<< startechoid << "\t-\t" << startechoid + tempechoBlockline;
}
return;
}