RasterProcessTool/GF3ProcessToolbox/GPURTPC.cu

569 lines
19 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#include <iostream>
#include <memory>
#include <cmath>
#include <complex>
#include <device_launch_parameters.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cuComplex.h>
#include "BaseConstVariable.h"
#include "GPURTPC.cuh"
#ifdef __CUDANVCC___
__device__ float GPU_getSigma0dB(CUDASigmaParam param, float theta) {//线性值
float sigma= param.p1 + param.p2 * exp(-param.p3 * theta) + param.p4 * cos(param.p5 * theta + param.p6);
return sigma;
}
__device__ CUDAVectorEllipsoidal GPU_SatelliteAntDirectNormal(float RstX, float RstY, float RstZ,
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ
) {
CUDAVectorEllipsoidal result{ 0,0,-1 };
float Xst = -1 * RstX; // 卫星 --> 地面
float Yst = -1 * RstY;
float Zst = -1 * RstZ;
float AntXaxisX = antXaxisX;
float AntXaxisY = antXaxisY;
float AntXaxisZ = antXaxisZ;
float AntYaxisX = antYaxisX;
float AntYaxisY = antYaxisY;
float AntYaxisZ = antYaxisZ;
float AntZaxisX = antZaxisX;
float AntZaxisY = antZaxisY;
float AntZaxisZ = antZaxisZ;
// 天线指向在天线坐标系下的值
float Xant = (Xst * (AntYaxisY * AntZaxisZ - AntYaxisZ * AntZaxisY) + Xst * (AntXaxisZ * AntZaxisY - AntXaxisY * AntZaxisZ) + Xst * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
float Yant = (Yst * (AntYaxisZ * AntZaxisX - AntYaxisX * AntZaxisZ) + Yst * (AntXaxisX * AntZaxisZ - AntXaxisZ * AntZaxisX) + Yst * (AntYaxisX * AntXaxisZ - AntXaxisX * AntYaxisZ)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
float Zant = (Zst * (AntYaxisX * AntZaxisY - AntYaxisY * AntZaxisX) + Zst * (AntXaxisY * AntZaxisX - AntXaxisX * AntZaxisY) + Zst * (AntXaxisX * AntYaxisY - AntYaxisX * AntXaxisY)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
// 计算theta 与 phi
float Norm = sqrtf(Xant * Xant + Yant * Yant + Zant * Zant); // 计算 pho
float ThetaAnt = acosf(Zant / Norm); // theta 与 Z轴的夹角
float YsinTheta = Yant / sinf(ThetaAnt);
float PhiAnt = (YsinTheta / abs(YsinTheta)) * acosf(Xant / (Norm * sinf(ThetaAnt)));
result.theta = ThetaAnt;
result.phi = PhiAnt;
result.pho = Norm;
return result;
}
__device__ float GPU_BillerInterpAntPattern(float* antpattern,
float starttheta, float startphi, float dtheta, float dphi,
long thetapoints, long phipoints,
float searththeta, float searchphi) {
float stheta = searththeta;
float sphi = searchphi;
if (stheta > 90) {
return 0;
}
else {}
float pthetaid = (stheta - starttheta) / dtheta;//
float pphiid = (sphi - startphi) / dphi;
long lasttheta = floorf(pthetaid);
long nextTheta = lasttheta + 1;
long lastphi = floorf(pphiid);
long nextPhi = lastphi + 1;
if (lasttheta < 0 || nextTheta < 0 || lastphi < 0 || nextPhi < 0 ||
lasttheta >= thetapoints || nextTheta >= thetapoints || lastphi >= phipoints || nextPhi >= phipoints)
{
return 0;
}
else {
float x = stheta;
float y = sphi;
float x1 = lasttheta * dtheta + starttheta;
float x2 = nextTheta * dtheta + starttheta;
float y1 = lastphi * dphi + startphi;
float y2 = nextPhi * dphi + startphi;
float z11 = antpattern[lasttheta * phipoints + lastphi];
float z12 = antpattern[lasttheta * phipoints + nextPhi];
float z21 = antpattern[nextTheta * phipoints + lastphi];
float z22 = antpattern[nextTheta * phipoints + nextPhi];
//z11 = powf(10, z11 / 10); // dB-> 线性
//z12 = powf(10, z12 / 10);
//z21 = powf(10, z21 / 10);
//z22 = powf(10, z22 / 10);
float GainValue = (z11 * (x2 - x) * (y2 - y)
+ z21 * (x - x1) * (y2 - y)
+ z12 * (x2 - x) * (y - y1)
+ z22 * (x - x1) * (y - y1));
GainValue = GainValue / ((x2 - x1) * (y2 - y1));
return GainValue;
}
}
__device__ cuComplex GPU_calculationEcho(float sigma0, float TransAnt, float ReciveAnt,
float localangle, float R, float slopeangle, float Pt, float lamda) {
float amp = Pt * TransAnt * ReciveAnt;
amp = amp * sigma0;
amp = amp / (powf(4 * LAMP_CUDA_PI, 2) * powf(R, 4)); // 反射强度
float phi = (-4 * LAMP_CUDA_PI / lamda) * R;
cuComplex echophi = make_cuComplex(0, phi);
cuComplex echophiexp = cuCexpf(echophi);
cuComplex echo=make_cuComplex(echophiexp.x * amp, echophiexp.y * amp);
return echo;
}
__global__ void CUDA_SatelliteAntDirectNormal(float* RstX, float* RstY, float* RstZ,
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ,
float* thetaAnt, float* phiAnt
, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float Xst = -1 * RstX[idx]; // 卫星 --> 地面
float Yst = -1 * RstY[idx];
float Zst = -1 * RstZ[idx];
float AntXaxisX = antXaxisX;
float AntXaxisY = antXaxisY;
float AntXaxisZ = antXaxisZ;
float AntYaxisX = antYaxisX;
float AntYaxisY = antYaxisY;
float AntYaxisZ = antYaxisZ;
float AntZaxisX = antZaxisX;
float AntZaxisY = antZaxisY;
float AntZaxisZ = antZaxisZ;
// 归一化
float RstNorm = sqrtf(Xst * Xst + Yst * Yst + Zst * Zst);
float AntXaxisNorm = sqrtf(AntXaxisX * AntXaxisX + AntXaxisY * AntXaxisY + AntXaxisZ * AntXaxisZ);
float AntYaxisNorm = sqrtf(AntYaxisX * AntYaxisX + AntYaxisY * AntYaxisY + AntYaxisZ * AntYaxisZ);
float AntZaxisNorm = sqrtf(AntZaxisX * AntZaxisX + AntZaxisY * AntZaxisY + AntZaxisZ * AntZaxisZ);
float Rx = Xst / RstNorm;
float Ry = Yst / RstNorm;
float Rz = Zst / RstNorm;
float Xx = AntXaxisX / AntXaxisNorm;
float Xy = AntXaxisY / AntXaxisNorm;
float Xz = AntXaxisZ / AntXaxisNorm;
float Yx = AntYaxisX / AntYaxisNorm;
float Yy = AntYaxisY / AntYaxisNorm;
float Yz = AntYaxisZ / AntYaxisNorm;
float Zx = AntZaxisX / AntZaxisNorm;
float Zy = AntZaxisY / AntZaxisNorm;
float Zz = AntZaxisZ / AntZaxisNorm;
float Xant = (Rx * Yy * Zz - Rx * Yz * Zy - Ry * Yx * Zz + Ry * Yz * Zx + Rz * Yx * Zy - Rz * Yy * Zx) / (Xx * Yy * Zz - Xx * Yz * Zy - Xy * Yx * Zz + Xy * Yz * Zx + Xz * Yx * Zy - Xz * Yy * Zx);
float Yant = -(Rx * Xy * Zz - Rx * Xz * Zy - Ry * Xx * Zz + Ry * Xz * Zx + Rz * Xx * Zy - Rz * Xy * Zx) / (Xx * Yy * Zz - Xx * Yz * Zy - Xy * Yx * Zz + Xy * Yz * Zx + Xz * Yx * Zy - Xz * Yy * Zx);
float Zant = (Rx * Xy * Yz - Rx * Xz * Yy - Ry * Xx * Yz + Ry * Xz * Yx + Rz * Xx * Yy - Rz * Xy * Yx) / (Xx * Yy * Zz - Xx * Yz * Zy - Xy * Yx * Zz + Xy * Yz * Zx + Xz * Yx * Zy - Xz * Yy * Zx);
// 计算theta 与 phi
float Norm = sqrtf(Xant * Xant + Yant * Yant + Zant * Zant); // 计算 pho
float ThetaAnt = acosf(Zant / Norm); // theta 与 Z轴的夹角
float PhiAnt = atanf(Yant / Xant); // -pi/2 ~pi/2
if (abs(Yant) < PRECISIONTOLERANCE) { // X轴上
PhiAnt = 0;
}
else if (abs(Xant) < PRECISIONTOLERANCE) { // Y轴上原点
if (Yant > 0) {
PhiAnt = PI / 2;
}
else {
PhiAnt = -PI / 2;
}
}
else if (Xant < 0) {
if (Yant > 0) {
PhiAnt = PI + PhiAnt;
}
else {
PhiAnt = -PI+PhiAnt ;
}
}
else { // Xant>0 X 正轴
}
if (isnan(PhiAnt)) {
printf("V=[%f,%f,%f];norm=%f;thetaAnt=%f;phiAnt=%f;\n", Xant, Yant, Zant,Norm, ThetaAnt, PhiAnt);
}
//if (abs(ThetaAnt - 0) < PRECISIONTOLERANCE) {
// PhiAnt = 0;
//}
//else {}
thetaAnt[idx] = ThetaAnt*r2d;
phiAnt[idx] = PhiAnt*r2d;
//printf("Rst=[%f,%f,%f];AntXaxis = [%f, %f, %f];AntYaxis=[%f,%f,%f];AntZaxis=[%f,%f,%f];phiAnt=%f;thetaAnt=%f;\n", Xst, Yst, Zst
// , AntXaxisX, AntXaxisY, AntXaxisZ
// , AntYaxisX, AntYaxisY, AntYaxisZ
// , AntZaxisX, AntZaxisY, AntZaxisZ
// , phiAnt[idx]
// , thetaAnt[idx]
//);
}
}
__global__ void CUDA_BillerInterpAntPattern(float* antpattern,
float starttheta, float startphi, float dtheta, float dphi,
long thetapoints, long phipoints,
float* searththeta, float* searchphi, float* searchantpattern,
long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float stheta = searththeta[idx];
float sphi = searchphi[idx];
float pthetaid = (stheta - starttheta) / dtheta;//
float pphiid = (sphi - startphi) / dphi;
long lasttheta = floorf(pthetaid);
long nextTheta = lasttheta + 1;
long lastphi = floorf(pphiid);
long nextPhi = lastphi + 1;
if (lasttheta < 0 || nextTheta < 0 || lastphi < 0 || nextPhi < 0 ||
lasttheta >= thetapoints || nextTheta >= thetapoints || lastphi >= phipoints || nextPhi >= phipoints)
{
searchantpattern[idx] = 0;
}
else {
float x = stheta;
float y = sphi;
float x1 = lasttheta * dtheta + starttheta;
float x2 = nextTheta * dtheta + starttheta;
float y1 = lastphi * dphi + startphi;
float y2 = nextPhi * dphi + startphi;
float z11 = antpattern[lasttheta * phipoints + lastphi];
float z12 = antpattern[lasttheta * phipoints + nextPhi];
float z21 = antpattern[nextTheta * phipoints + lastphi];
float z22 = antpattern[nextTheta * phipoints + nextPhi];
z11 = powf(10, z11 / 10);
z12 = powf(10, z12 / 10);
z21 = powf(10, z21 / 10);
z22 = powf(10, z22 / 10);
float GainValue = (z11 * (x2 - x) * (y2 - y)
+ z21 * (x - x1) * (y2 - y)
+ z12 * (x2 - x) * (y - y1)
+ z22 * (x - x1) * (y - y1));
GainValue = GainValue / ((x2 - x1) * (y2 - y1));
searchantpattern[idx] = GainValue;
}
}
}
__global__ void CUDA_calculationEcho(float* sigma0, float* TransAnt, float* ReciveAnt,
float* localangle, float* R, float* slopeangle,
float nearRange, float Fs, float Pt, float lamda, long FreqIDmax,
cuComplex* echoArr, long* FreqID,
long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float r = R[idx];
float amp = Pt * TransAnt[idx] * ReciveAnt[idx];
amp = amp * sigma0[idx];
amp = amp / (powf(4 * LAMP_CUDA_PI, 2) * powf(r, 4)); // 反射强度
// 处理相位
float phi = (-4 * LAMP_CUDA_PI / lamda) * r;
cuComplex echophi = make_cuComplex(0, phi);
cuComplex echophiexp = cuCexpf(echophi);
float timeR = 2 * (r - nearRange) / LIGHTSPEED * Fs;
long timeID = floorf(timeR);
//if (timeID < 0 || timeID >= FreqIDmax) {
// timeID = 0;
// amp = 0;
//}
cuComplex echo = make_cuComplex(echophiexp.x , echophiexp.y);
echoArr[idx] = echo;
FreqID[idx] = timeID;
}
}
__global__ void CUDA_AntPatternInterpGain(float* anttheta, float* antphi, float* gain,
float* antpattern, float starttheta, float startphi, float dtheta, float dphi, int thetapoints, int phipoints, long len) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float temptheta = anttheta[idx];
float tempphi = antphi[idx];
float antPatternGain = GPU_BillerInterpAntPattern(antpattern,
starttheta, startphi, dtheta, dphi, thetapoints, phipoints,
temptheta, tempphi) ;
gain[idx] = antPatternGain;
}
}
__global__ void CUDA_InterpSigma(
long* demcls, float* sigmaAmp, float* localanglearr, long len,
CUDASigmaParam* sigma0Paramslist, long sigmaparamslistlen) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
long clsid = demcls[idx];
float localangle = localanglearr[idx];
CUDASigmaParam tempsigma = sigma0Paramslist[clsid];
//printf("cls:%d;localangle=%f;\n",clsid, localangle);
if (localangle < 0 || localangle >= LAMP_CUDA_PI/2) {
sigmaAmp[idx] = 0;
}
else {}
if (abs(tempsigma.p1)< PRECISIONTOLERANCE&&
abs(tempsigma.p2) < PRECISIONTOLERANCE &&
abs(tempsigma.p3) < PRECISIONTOLERANCE &&
abs(tempsigma.p4) < PRECISIONTOLERANCE&&
abs(tempsigma.p5) < PRECISIONTOLERANCE&&
abs(tempsigma.p6) < PRECISIONTOLERANCE
) {
sigmaAmp[idx] = 0;
}
else {
float sigma = GPU_getSigma0dB(tempsigma, localangle);
sigma = powf(10.0, sigma / 10.0);// 后向散射系数
//printf("cls:%d;localangle=%f;sigma0=%f;\n", clsid, localangle, sigma);
sigmaAmp[idx] = sigma;
}
}
}
__global__ void CUDA_CalculationEchoAmp(float* sigma0, float* TransAnt, float* ReciveAnt, float* R,
float Pt,
float* ampArr, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float r = R[idx];
float amptemp = Pt * TransAnt[idx] * ReciveAnt[idx] * sigma0[idx];
amptemp = amptemp / (powf(4 * LAMP_CUDA_PI, 2) * powf(r, 4)); // 反射强度
ampArr[idx] = amptemp;
}
}
__global__ void CUDA_CalculationEchoPhase(float* R, float lamda, float* phaseArr, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float r = R[idx];
// 处理相位
float phi = (-4 * LAMP_CUDA_PI / lamda) * r;
phaseArr[idx] = phi;
}
}
__global__ void CUDA_CombinationEchoAmpAndPhase(float* R,
float* echoAmp,float* echoPhase,
float nearRange, float Fs, long plusepoints,
cuComplex* echo, long* FreqID, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float r = R[idx];
float phase = echoPhase[idx];
float amp = echoAmp[idx];
cuComplex echophi = make_cuComplex(0, phase);
cuComplex echophiexp = cuCexpf(echophi);
float timeR = 2 * (r - nearRange) / LIGHTSPEED * Fs;
long timeID = floorf(timeR);
if (timeID < 0 || timeID >= plusepoints) {
timeID = 0;
amp = 0;
}
cuComplex echotemp = make_cuComplex(echophiexp.x*amp, echophiexp.y*amp);
echo[idx] = echotemp;
FreqID[idx] = timeID;
}
}
extern "C" void SatelliteAntDirectNormal(float* RstX, float* RstY, float* RstZ,
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ,
float* thetaAnt, float* phiAnt
, long len) {
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
// 调用 CUDA 核函数
CUDA_SatelliteAntDirectNormal << <numBlocks, blockSize >> > (RstX, RstY, RstZ,
antXaxisX, antXaxisY, antXaxisZ,
antYaxisX, antYaxisY, antYaxisZ,
antZaxisX, antZaxisY, antZaxisZ,
antDirectX, antDirectY, antDirectZ,
thetaAnt, phiAnt
, len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void AntPatternInterpGain(float* anttheta, float* antphi, float* gain,
float* antpattern, float starttheta, float startphi, float dtheta, float dphi, int thetapoints, int phipoints, long len) {
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
//printf("\nCUDA_RTPC_SiglePRF blockSize:%d ,numBlock:%d\n", blockSize, numBlocks);
CUDA_AntPatternInterpGain << <numBlocks, blockSize >> > ( anttheta,antphi, gain,
antpattern,
starttheta, startphi, dtheta, dphi, thetapoints, phipoints,
len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void calculationEcho(float* sigma0, float* TransAnt, float* ReciveAnt,
float* localangle, float* R, float* slopeangle,
float nearRange, float Fs, float pt, float lamda, long FreqIDmax,
cuComplex* echoAmp, long* FreqID,
long len)
{
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
// 调用 CUDA 核函数
CUDA_calculationEcho << <numBlocks, blockSize >> > (sigma0, TransAnt, ReciveAnt,
localangle, R, slopeangle,
nearRange, Fs, pt, lamda, FreqIDmax,
echoAmp, FreqID,
len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void CUDACalculationEchoAmp(float* sigma0, float* TransAnt, float* ReciveAnt, float* R, float Pt, float* ampArr, long len)
{
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
// 调用 CUDA 核函数
CUDA_CalculationEchoAmp << <numBlocks, blockSize >> > (
sigma0, TransAnt, ReciveAnt, R, Pt, ampArr, len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void CUDACalculationEchoPhase(float* R, float lamda, float* phaseArr, long len)
{
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
// 调用 CUDA 核函数
CUDA_CalculationEchoPhase << <numBlocks, blockSize >> > (
R, lamda, phaseArr, len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void CUDACombinationEchoAmpAndPhase(float* R,
float* echoAmp, float* echoPhase,
float nearRange, float Fs, long plusepoints, cuComplex* echo, long* FreqID, long len)
{
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
// 调用 CUDA 核函数
CUDA_CombinationEchoAmpAndPhase << <numBlocks, blockSize >> > (
R,
echoAmp, echoPhase,
nearRange, Fs, plusepoints, echo, FreqID, len
);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void CUDAInterpSigma(
long* demcls,float* sigmaAmp, float* localanglearr,long len,
CUDASigmaParam* sigma0Paramslist, long sigmaparamslistlen) {// 地表覆盖类型-sigma插值对应函数-ulaby
int blockSize = 256; // 每个块的线程数
int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小
// 调用 CUDA 核函数
CUDA_InterpSigma << <numBlocks, blockSize >> > (
demcls, sigmaAmp, localanglearr, len,
sigma0Paramslist, sigmaparamslistlen
);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
#endif