RasterProcessTool/Toolbox/SimulationSARTool/SARImage/ImageNetOperator.cpp

407 lines
16 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#include "ImageNetOperator.h"
#include "LogInfoCls.h"
#include "PrintMsgToQDebug.h"
#include <QDebug>
#include "ImageOperatorBase.h"
#include "GPUBaseTool.h"
#include "GPUBPImageNet.cuh"
#include "BaseTool.h"
void InitCreateImageXYZProcess(QString& outImageLLPath, QString& outImageXYZPath, QString& InEchoGPSDataPath,
double& NearRange, double& RangeResolution, int64_t& RangeNum)
{
qDebug() << "---------------------------------------------------------------------------------";
qDebug() << u8"创建粗成像平面斜距投影网格";
gdalImage antimg(InEchoGPSDataPath);
qDebug() << u8"1. 回波GPS坐标点文件参数\t";
qDebug() << u8"文件路径:\t" << InEchoGPSDataPath;
qDebug() << u8"GPS 点数:\t" << antimg.height;
qDebug() << u8"文件列数:\t" << antimg.width;
qDebug() << u8"2.斜距网格参数:";
qDebug() << u8"近距离:\t" << NearRange;
qDebug() << u8"分辨率:\t" << RangeResolution;
qDebug() << u8"网格点数:\t" << RangeNum;
qDebug() << u8"3.输出文件参数:";
gdalImage outimgll = CreategdalImageDouble(outImageLLPath, antimg.height,RangeNum, 3,true,true);
gdalImage outimgxyz = CreategdalImageDouble(outImageXYZPath, antimg.height, RangeNum, 3, true, true);
qDebug() << u8"成像平面文件(经纬度)网格路径:\t" << outImageLLPath;
qDebug() << u8"成像平面文件XYZ网格路径\t" << outImageXYZPath;
qDebug() << u8"4.开始创建成像网格XYZ";
long prfcount = antimg.height;
long rangeNum = RangeNum;
double Rnear = NearRange;
double dx = RangeResolution;
long blockRangeCount = Memory1GB / sizeof(double) / 4 / prfcount *6;
blockRangeCount = blockRangeCount < 1 ? 1 : blockRangeCount;
std::shared_ptr<double> Pxs((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> Pys((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> Pzs((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> AntDirectX((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> AntDirectY((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> AntDirectZ((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
{
long colnum = 19;
std::shared_ptr<double> antpos =readDataArr<double>(antimg,0,0,prfcount, colnum,1,GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
double time = 0;
double Px = 0;
double Py = 0;
double Pz = 0;
for (long i = 0; i < prfcount; i++) {
Pxs.get()[i] = antpos.get()[i * 19 + 1]; // 卫星坐标
Pys.get()[i] = antpos.get()[i * 19 + 2];
Pzs.get()[i] = antpos.get()[i * 19 + 3];
AntDirectX.get()[i] = antpos.get()[i * 19 + 13];// zero doppler
AntDirectY.get()[i] = antpos.get()[i * 19 + 14];
AntDirectZ.get()[i] = antpos.get()[i * 19 + 15];
double NormAnt = std::sqrt(AntDirectX.get()[i] * AntDirectX.get()[i] +
AntDirectY.get()[i] * AntDirectY.get()[i] +
AntDirectZ.get()[i] * AntDirectZ.get()[i]);
AntDirectX.get()[i] = AntDirectX.get()[i] / NormAnt;
AntDirectY.get()[i] = AntDirectY.get()[i] / NormAnt;
AntDirectZ.get()[i] = AntDirectZ.get()[i] / NormAnt;// 归一化
}
antpos.reset();
}
std::shared_ptr<double> d_Pxs((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_Pys((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_Pzs((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_AntDirectX((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_AntDirectY((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_AntDirectZ((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
HostToDevice(Pxs.get(), d_Pxs.get(), sizeof(double) * prfcount);
HostToDevice(Pys.get(), d_Pys.get(), sizeof(double) * prfcount);
HostToDevice(Pzs.get(), d_Pzs.get(), sizeof(double) * prfcount);
HostToDevice(AntDirectX.get(), d_AntDirectX.get(), sizeof(double) * prfcount);
HostToDevice(AntDirectY.get(), d_AntDirectY.get(), sizeof(double) * prfcount);
HostToDevice(AntDirectZ.get(), d_AntDirectZ.get(), sizeof(double) * prfcount);
for (long startcolidx = 0; startcolidx < RangeNum; startcolidx = startcolidx + blockRangeCount) {
long tempechocol = blockRangeCount;
if (startcolidx + tempechocol >= RangeNum) {
tempechocol = RangeNum - startcolidx;
}
qDebug() << " imgxyz :\t" << startcolidx << "\t-\t" << startcolidx + tempechocol << " / " << RangeNum;
std::shared_ptr<double> demx = readDataArr<double>(outimgxyz, 0, startcolidx, prfcount, tempechocol, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> demy = readDataArr<double>(outimgxyz, 0, startcolidx, prfcount, tempechocol, 2, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> demz = readDataArr<double>(outimgxyz, 0, startcolidx, prfcount, tempechocol, 3, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> h_demx((double*)mallocCUDAHost(sizeof(double) * prfcount * tempechocol), FreeCUDAHost);
std::shared_ptr<double> h_demy((double*)mallocCUDAHost(sizeof(double) * prfcount * tempechocol), FreeCUDAHost);
std::shared_ptr<double> h_demz((double*)mallocCUDAHost(sizeof(double) * prfcount * tempechocol), FreeCUDAHost);
#pragma omp parallel for
for (long ii = 0; ii < prfcount; ii++) {
for (long jj = 0; jj < tempechocol; jj++) {
h_demx.get()[ii * tempechocol + jj] = demx.get()[ii * tempechocol + jj];
h_demy.get()[ii * tempechocol + jj] = demy.get()[ii * tempechocol + jj];
h_demz.get()[ii * tempechocol + jj] = demz.get()[ii * tempechocol + jj];
}
}
std::shared_ptr<double> d_demx((double*)mallocCUDADevice(sizeof(double) * prfcount * tempechocol), FreeCUDADevice);
std::shared_ptr<double> d_demy((double*)mallocCUDADevice(sizeof(double) * prfcount * tempechocol), FreeCUDADevice);
std::shared_ptr<double> d_demz((double*)mallocCUDADevice(sizeof(double) * prfcount * tempechocol), FreeCUDADevice);
HostToDevice(h_demx.get(), d_demx.get(), sizeof(double) * prfcount * tempechocol);
HostToDevice(h_demy.get(), d_demy.get(), sizeof(double) * prfcount * tempechocol);
HostToDevice(h_demz.get(), d_demz.get(), sizeof(double) * prfcount * tempechocol);
TIMEBPCreateImageGrid(
d_Pxs.get(), d_Pys.get(), d_Pzs.get(),
d_AntDirectX.get(), d_AntDirectY.get(), d_AntDirectZ.get(),
d_demx.get(), d_demy.get(), d_demz.get(),
prfcount, tempechocol, 0,
Rnear + dx * startcolidx, dx // 更新最近修读
);
DeviceToHost(h_demx.get(), d_demx.get(), sizeof(double) * prfcount * tempechocol);
DeviceToHost(h_demy.get(), d_demy.get(), sizeof(double) * prfcount * tempechocol);
DeviceToHost(h_demz.get(), d_demz.get(), sizeof(double) * prfcount * tempechocol);
#pragma omp parallel for
for (long ii = 0; ii < prfcount; ii++) {
for (long jj = 0; jj < tempechocol; jj++) {
demx.get()[ii * tempechocol + jj] = h_demx.get()[ii * tempechocol + jj];
demy.get()[ii * tempechocol + jj] = h_demy.get()[ii * tempechocol + jj];
demz.get()[ii * tempechocol + jj] = h_demz.get()[ii * tempechocol + jj];
}
}
outimgxyz.saveImage(demx, 0, startcolidx, prfcount, tempechocol, 1);
outimgxyz.saveImage(demy, 0, startcolidx, prfcount, tempechocol, 2);
outimgxyz.saveImage(demz, 0, startcolidx, prfcount, tempechocol, 3);
// 将XYZ转换为经纬度
std::shared_ptr<double> demllx = readDataArr<double>(outimgll, 0, startcolidx, prfcount, tempechocol, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> demlly = readDataArr<double>(outimgll, 0, startcolidx, prfcount, tempechocol, 2, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> demllz = readDataArr<double>(outimgll, 0, startcolidx, prfcount, tempechocol, 3, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
#pragma omp parallel for
for (long ii = 0; ii < prfcount; ii++) {
for (long jj = 0; jj < tempechocol; jj++) {
double x = demx.get()[ii * tempechocol + jj];
double y = demy.get()[ii * tempechocol + jj];
double z = demz.get()[ii * tempechocol + jj];
Landpoint point;
XYZ2BLH_FixedHeight(x, y, z, 0, point);
demllx.get()[ii * tempechocol + jj] = point.lon;
demlly.get()[ii * tempechocol + jj] = point.lat;
demllz.get()[ii * tempechocol + jj] = point.ati;
}
}
outimgll.saveImage(demllx, 0, startcolidx, prfcount, tempechocol, 1);
outimgll.saveImage(demlly, 0, startcolidx, prfcount, tempechocol, 2);
outimgll.saveImage(demllz, 0, startcolidx, prfcount, tempechocol, 3);
}
qDebug() << u8"6.保存成像网格结果";
qDebug() << "---------------------------------------------------------------------------------";
}
bool OverlapCheck(QString& ImageLLPath, QString& ImageDEMPath)
{
// 检查DEM是否是WGS84坐标系
//long demEPSG = GetEPSGFromRasterFile(ImageDEMPath);
//if (demEPSG != 4326) {
// qDebug() << u8"DEM坐标系不是WGS84坐标系,ESPG:"<< demEPSG;
// return false;
//}
gdalImage demimg(ImageDEMPath);
gdalImage imgll(ImageLLPath);
long imgheight = imgll.height;
long imgwidth = imgll.width;
Eigen::MatrixXd imglonArr = imgll.getData(0, 0, imgheight, imgwidth, 1);
Eigen::MatrixXd imglatArr = imgll.getData(0, 0, imgheight, imgwidth, 2);
// 打印范围
qDebug() << u8"影像范围:";
qDebug() << u8"最小经度:\t" << imglonArr.minCoeff();
qDebug() << u8"最大经度:\t" << imglonArr.maxCoeff();
qDebug() << u8"最小纬度:\t" << imglatArr.minCoeff();
qDebug() << u8"最大纬度:\t" << imglatArr.maxCoeff();
qDebug() << u8"DEM范围";
RasterExtend demextend = demimg.getExtend();
qDebug() << u8"最小经度:\t" << demextend.min_x;
qDebug() << u8"最大经度:\t" << demextend.max_x;
qDebug() << u8"最小纬度:\t" << demextend.min_y;
qDebug() << u8"最大纬度:\t" << demextend.max_y;
qDebug() << u8"影像大小:\t" << demimg.height << " * " << demimg.width;
for (long i = 0; i < imgheight; i++)
{
for (long j = 0; j < imgwidth; j++)
{
double lon = imglonArr(i, j); // X
double lat = imglatArr(i, j); // Y
Landpoint point = demimg.getRow_Col(lon, lat);
imglonArr(i, j) = point.lon;
imglatArr(i, j) = point.lat;
}
}
double minX = imglonArr.minCoeff();
double maxX = imglonArr.maxCoeff();
double minY = imglatArr.minCoeff();
double maxY = imglatArr.maxCoeff();
//打印范围
qDebug() << u8"dem 的范围:";
qDebug() << u8"minX:"<<minX<<"\t"<<demimg.width;
qDebug() << u8"maxX:"<<maxX << "\t" << demimg.width;
qDebug() << u8"minY:"<<minY << "\t" << demimg.height;
qDebug() << u8"maxY:"<<maxY << "\t" << demimg.height;
qDebug() << u8"图像行列:\t" << demimg.height << " , " << demimg.width;
if (minX<1 || maxX>demimg.width - 1 || minY<1 || maxY>demimg.height - 1) {
return false;
}
else {
return true;
}
}
bool GPSPointsNumberEqualCheck(QString& ImageLLPath, QString& InEchoGPSDataPath)
{
gdalImage antimg(InEchoGPSDataPath);
gdalImage imgll(ImageLLPath);
return antimg.height == imgll.height;
}
void InterploateAtiByRefDEM(QString& ImageLLPath, QString& ImageDEMPath, QString& outImageLLAPath, QString& InEchoGPSDataPath)
{
gdalImage demimg(ImageDEMPath);
gdalImage imgll(ImageLLPath);
gdalImage outimgll = CreategdalImageDouble(outImageLLAPath, imgll.height, imgll.width, 4, true, true); // 经度、纬度、高程、斜距
long imgheight = imgll.height;
long imgwidth = imgll.width;
Eigen::MatrixXd imglonArr = imgll.getData(0, 0, imgheight, imgwidth, 1);
Eigen::MatrixXd imglatArr = imgll.getData(0, 0, imgheight, imgwidth, 2);
Eigen::MatrixXd demArr = demimg.getData(0, 0, demimg.height, demimg.width, 1);
Eigen::MatrixXd imgatiArr = Eigen::MatrixXd::Zero(imgheight, imgwidth);
Eigen::MatrixXd imgRArr = Eigen::MatrixXd::Zero(imgheight, imgwidth);
outimgll.saveImage(imglonArr, 0, 0, 1);
outimgll.saveImage(imglatArr, 0, 0, 2);
double minX = imglonArr.minCoeff();
double maxX = imglonArr.maxCoeff();
double minY = imglatArr.minCoeff();
double maxY = imglatArr.maxCoeff();
//打印范围
qDebug() << u8"dem 的范围:";
qDebug() << u8"minX:" << minX << "\t" << demimg.width;
qDebug() << u8"maxX:" << maxX << "\t" << demimg.width;
qDebug() << u8"minY:" << minY << "\t" << demimg.height;
qDebug() << u8"maxY:" << maxY << "\t" << demimg.height;
qDebug() << u8"图像行列:\t" << demimg.height << " , " << demimg.width;
for (long i = 0; i < imgheight; i++) {
//printf("\rprocess:%f precent\t\t\t",i*100.0/imgheight);
for (long j = 0; j < imgwidth; j++) {
double lon = imglonArr(i, j);
double lat = imglatArr(i, j);
Landpoint point = demimg.getRow_Col(lon, lat);
Landpoint p0, p11, p21, p12, p22;
p0.lon = point.lon;
p0.lat = point.lat;
p11.lon = floor(p0.lon);
p11.lat = floor(p0.lat);
p11.ati = demArr(long(p11.lat), long(p11.lon));
p12.lon = ceil(p0.lon);
p12.lat = floor(p0.lat);
p12.ati = demArr(long(p12.lat), long(p12.lon));
p21.lon = floor(p0.lon);
p21.lat = ceil(p0.lat);
p21.ati = demArr(long(p21.lat), long(p21.lon));
p22.lon = ceil(p0.lon);
p22.lat = ceil(p0.lat);
p22.ati = demArr(long(p22.lat), long(p22.lon));
p0.lon = p0.lon - p11.lon;
p0.lat = p0.lat - p11.lat;
p12.lon = p12.lon - p11.lon;
p12.lat = p12.lat - p11.lat;
p21.lon = p21.lon - p11.lon;
p21.lat = p21.lat - p11.lat;
p22.lon = p22.lon - p11.lon;
p22.lat = p22.lat - p11.lat;
p11.lon = p11.lon - p11.lon;
p11.lat = p11.lat - p11.lat;
p0.ati=Bilinear_interpolation(p0, p11, p21, p12, p22);
imgatiArr(i, j) = p0.ati;
}
}
outimgll.saveImage(imgatiArr, 0, 0, 3);
qDebug() << u8"计算每个点的斜距值";
gdalImage antimg(InEchoGPSDataPath);
qDebug() << u8"1. 回波GPS坐标点文件参数\t";
qDebug() << u8"文件路径:\t" << InEchoGPSDataPath;
qDebug() << u8"GPS 点数:\t" << antimg.height;
qDebug() << u8"文件列数:\t" << antimg.width;
long prfcount = antimg.height;
std::shared_ptr<double> Pxs((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> Pys((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> Pzs((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> AntDirectX((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> AntDirectY((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> AntDirectZ((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
{
long colnum = 19;
std::shared_ptr<double> antpos = readDataArr<double>(antimg, 0, 0, prfcount, colnum, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
double time = 0;
double Px = 0;
double Py = 0;
double Pz = 0;
for (long i = 0; i < prfcount; i++) {
Pxs.get()[i] = antpos.get()[i * 19 + 1]; // 卫星坐标
Pys.get()[i] = antpos.get()[i * 19 + 2];
Pzs.get()[i] = antpos.get()[i * 19 + 3];
AntDirectX.get()[i] = antpos.get()[i * 19 + 13];// zero doppler
AntDirectY.get()[i] = antpos.get()[i * 19 + 14];
AntDirectZ.get()[i] = antpos.get()[i * 19 + 15];
double NormAnt = std::sqrt(AntDirectX.get()[i] * AntDirectX.get()[i] +
AntDirectY.get()[i] * AntDirectY.get()[i] +
AntDirectZ.get()[i] * AntDirectZ.get()[i]);
AntDirectX.get()[i] = AntDirectX.get()[i] / NormAnt;
AntDirectY.get()[i] = AntDirectY.get()[i] / NormAnt;
AntDirectZ.get()[i] = AntDirectZ.get()[i] / NormAnt;// 归一化
}
antpos.reset();
}
#pragma omp parallel for
for (long prfid = 0; prfid < prfcount; prfid++) {
double Px = Pxs.get()[prfid];
double Py = Pys.get()[prfid];
double Pz = Pzs.get()[prfid];
double R = 0;
Landpoint LLA = {};
Point3 XYZ = {};
for (long j = 0; j < imgwidth; j++) {
LLA.lon = imglonArr(prfid, j);
LLA.lat = imglatArr(prfid, j);
LLA.ati = imgatiArr(prfid, j);
LLA2XYZ(LLA, XYZ);
R = sqrt(pow(Px - XYZ.x, 2) +
pow(Py - XYZ.y, 2) +
pow(Pz - XYZ.z, 2));
imgRArr(prfid, j) = R;
}
}
outimgll.saveImage(imgRArr, 0, 0, 4);
qDebug() << u8"插值完成";
}