561 lines
19 KiB
Plaintext
561 lines
19 KiB
Plaintext
#include <iostream>
|
||
#include <memory>
|
||
#include <cmath>
|
||
#include <complex>
|
||
#include <sm_20_atomic_functions.h>
|
||
#include <device_double_functions.h>
|
||
#include <device_launch_parameters.h>
|
||
#include <cuda_runtime.h>
|
||
#include <math_functions.h>
|
||
#include <cufft.h>
|
||
#include <cufftw.h>
|
||
#include <cufftXt.h>
|
||
#include <cublas_v2.h>
|
||
#include <cuComplex.h>
|
||
#include <chrono>
|
||
#include "BaseConstVariable.h"
|
||
#include "GPUTool.cuh"
|
||
#include "GPUDouble32.cuh"
|
||
#include "PrintMsgToQDebug.h"
|
||
|
||
|
||
// 将 double 转换为 double32
|
||
|
||
|
||
// 方法一:使用CUDA内置快速除法指令
|
||
__device__ float fast_reciprocal(float x) {
|
||
return __fdividef(1.0f, x); // 精确度约21位
|
||
}
|
||
|
||
|
||
// 方法二:PTX指令级实现(更快但精度略低)
|
||
__device__ float ptx_reciprocal(float x) {
|
||
float r;
|
||
asm("rcp.approx.ftz.f32 %0, %1;" : "=f"(r) : "f"(x));
|
||
return r; // 精确度约20位
|
||
}
|
||
|
||
|
||
// 快速双32位运算核心算法
|
||
__device__ __host__ double32 two_sum(float a, float b) {
|
||
float s = a + b;
|
||
float v = s - a;
|
||
float e = (a - (s - v)) + (b - v);
|
||
return double32(s, e);
|
||
}
|
||
|
||
__device__ __host__ double32 quick_two_sum(float a, float b) {
|
||
float s = a + b;
|
||
float e = b - (s - a);
|
||
return double32(s, e);
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
|
||
__device__ double32 double_to_double32(double value) {
|
||
const float SCALE_FACTOR = 1u << 12 + 1; // 4097.0f
|
||
const float INV_SCALE = 1.0f / SCALE_FACTOR;
|
||
|
||
// Step 1: 分割双精度值为高低两部分
|
||
float high = __double2float_rd(value);
|
||
double residual = value - __double2float_rd(high);
|
||
|
||
// Step 2: 使用Dekker算法精确分解余数
|
||
float temp = SCALE_FACTOR * __double2float_ru(residual);
|
||
float res_hi = temp - (temp - __double2float_ru(residual));
|
||
float res_lo = __double2float_ru(residual) - res_hi;
|
||
|
||
// Step 3: 合并结果
|
||
float low = (res_hi + (res_lo + (residual - __double2float_rd(residual)))) * INV_SCALE;
|
||
|
||
// Step 4: 规范化处理
|
||
float s = high + low;
|
||
float e = low - (s - high);
|
||
return double32(s, e);
|
||
}
|
||
|
||
// 将 double32 转换为 double
|
||
__device__ __host__ double double32_to_double(const double32& value) {
|
||
// 分步转换确保精度不丢失
|
||
const double high_part = static_cast<double>(value.high);
|
||
const double low_part = static_cast<double>(value.low);
|
||
|
||
// Kahan式加法补偿舍入误差
|
||
const double sum = high_part + low_part;
|
||
const double err = (high_part - sum) + low_part;
|
||
|
||
return sum + err;
|
||
}
|
||
|
||
|
||
|
||
// 使用加法函数
|
||
__device__ double32 double32_add(const double32& a, const double32& b) {
|
||
double32 s = two_sum(a.high, b.high);
|
||
s.low += a.low + b.low;
|
||
return quick_two_sum(s.high, s.low);
|
||
}
|
||
|
||
// 使用减法函数
|
||
__device__ double32 double32_sub(const double32& a, const double32& b) {
|
||
// 步骤1:高位部分相减(核心计算)
|
||
float high_diff = a.high - b.high;
|
||
|
||
// 步骤2:误差补偿计算(参考Dekker算法)
|
||
float temp = (a.high - (high_diff + b.high)) + (b.high - (a.high - high_diff));
|
||
|
||
// 步骤3:低位综合计算(结合参考的精度保护机制)
|
||
float low_diff = (a.low - b.low) + temp;
|
||
|
||
// 步骤4:重正规化处理(关键精度保障,参考)
|
||
float sum = high_diff + low_diff;
|
||
float residual = low_diff - (sum - high_diff);
|
||
|
||
return { sum, residual };
|
||
}
|
||
|
||
// 使用乘法函数
|
||
__device__ double32 double32_mul(const double32& a, const double32& b) {
|
||
const float split = 4097.0f; // 2^12 + 1
|
||
float c = split * a.high;
|
||
float a_hi = c - (c - a.high);
|
||
float a_lo = a.high - a_hi;
|
||
|
||
c = split * b.high;
|
||
float b_hi = c - (c - b.high);
|
||
float b_lo = b.high - b_hi;
|
||
|
||
float p = a.high * b.high;
|
||
float e = (((a_hi * b_hi - p) + a_hi * b_lo) + a_lo * b_hi) + a_lo * b_lo;
|
||
e += a.high * b.low + a.low * b.high;
|
||
return quick_two_sum(p, e);
|
||
}
|
||
|
||
// 使用除法函数
|
||
__device__ double32 double32_div(const double32& x, const double32& y) {
|
||
// 步骤1:使用改进的牛顿迭代法
|
||
float y_hi = y.high;
|
||
float inv_hi = fast_reciprocal(y_hi);
|
||
|
||
// 一次牛顿迭代提升精度(需要2次FMA)
|
||
inv_hi = __fmaf_rn(inv_hi, __fmaf_rn(-y_hi, inv_hi, 1.0f), inv_hi);
|
||
|
||
// 步骤2:计算商的高位部分
|
||
float q_hi = x.high * inv_hi;
|
||
|
||
// 步骤3:误差补偿计算
|
||
double32 p = double32_mul(y, double32(q_hi, 0));
|
||
double32 r = double32_sub(x, p);
|
||
|
||
// 步骤4:精确计算低位部分
|
||
float q_lo = (r.high + r.low) * inv_hi;
|
||
q_lo = __fmaf_rn(-q_hi, y.low, q_lo) * inv_hi;
|
||
|
||
// 步骤5:规范化结果
|
||
return quick_two_sum(q_hi, q_lo);
|
||
}
|
||
|
||
// 使用 sin 函数
|
||
__device__ double32 double32_sin(const double32& a) {
|
||
double32 result;
|
||
result.high = sinf(a.high);
|
||
result.low = sinf(a.low);
|
||
return result;
|
||
}
|
||
|
||
// 使用 cos 函数
|
||
__device__ double32 double32_cos(const double32& a) {
|
||
double32 result;
|
||
result.high = cosf(a.high);
|
||
result.low = cosf(a.low);
|
||
return result;
|
||
}
|
||
|
||
// 使用 log2 函数
|
||
__device__ double32 double32_log2(const double32& a) {
|
||
double32 result;
|
||
result.high = log2f(a.high);
|
||
result.low = log2f(a.low);
|
||
return result;
|
||
}
|
||
|
||
// 使用 log10 函数
|
||
__device__ double32 double32_log10(const double32& a) {
|
||
double32 result;
|
||
result.high = log10f(a.high);
|
||
result.low = log10f(a.low);
|
||
return result;
|
||
}
|
||
|
||
// 使用 ln 函数
|
||
__device__ double32 double32_ln(const double32& a) {
|
||
double32 result;
|
||
result.high = logf(a.high);
|
||
result.low = logf(a.low);
|
||
return result;
|
||
}
|
||
|
||
// 使用 exp 函数
|
||
__device__ double32 double32_exp(const double32& a) {
|
||
double32 result;
|
||
result.high = expf(a.high);
|
||
result.low = expf(a.low);
|
||
return result;
|
||
}
|
||
|
||
// 使用 pow 函数
|
||
__device__ double32 double32_pow(const double32& a, const double32& b) {
|
||
double32 result;
|
||
result.high = powf(a.high, b.high);
|
||
result.low = powf(a.low, b.low);
|
||
return result;
|
||
}
|
||
|
||
// 使用 sqrt 函数
|
||
__device__ double32 double32_sqrt(const double32& a) {
|
||
double32 result;
|
||
result.high = sqrtf(a.high);
|
||
result.low = sqrtf(a.low);
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
|
||
__global__ void test_double_to_double32_kernel(double* d_input, double* d_output, int size) {
|
||
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||
if (idx < size) {
|
||
double value = d_input[idx];
|
||
d_output[idx] = double32_to_double(double_to_double32(value))-value;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
__global__ void test_kernel(double* d_input, double* d_output, int size, int operation) {
|
||
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||
if (idx < size) {
|
||
double va = d_input[idx];
|
||
double vb = va + 1.0;
|
||
double32 a = double_to_double32(va);
|
||
double32 b = double_to_double32(vb); // 用于二元操作的第二个操作数
|
||
switch (operation) {
|
||
case 0: d_output[idx] = double32_to_double(double32_add(a, b)) - (va + vb); break;
|
||
case 1: d_output[idx] = double32_to_double(double32_sub(a, b)) - (va - vb); break;
|
||
case 2: d_output[idx] = double32_to_double(double32_mul(a, b)) - (va * vb); break;
|
||
case 3: d_output[idx] = double32_to_double(double32_div(a, b)) - (va / vb); break;
|
||
case 4: d_output[idx] = double32_to_double(double32_sin(a))-sin(va); break;
|
||
case 5: d_output[idx] = double32_to_double(double32_cos(a))-cos(va); break;
|
||
case 6: d_output[idx] = double32_to_double(double32_log2(a))-log2(va); break;
|
||
case 7: d_output[idx] = double32_to_double(double32_log10(a))-log10(va); break;
|
||
case 8: d_output[idx] = double32_to_double(double32_ln(a))-log(va); break;
|
||
case 9: d_output[idx] = double32_to_double(double32_exp(a))-exp(va); break;
|
||
case 10: d_output[idx] = double32_to_double(double32_pow(a, b))-pow(va,vb); break;
|
||
case 11: d_output[idx] = double32_to_double(double32_sqrt(a))-sqrt(va); break;
|
||
}
|
||
if (idx == 1) {
|
||
switch (operation) {
|
||
case 0: d_output[idx] = printf("add, \tva=%f,vb=%f,d_output=%e\n", va, vb, d_output[idx]);; break;
|
||
case 1: d_output[idx] = printf("sub, \tva=%f,vb=%f,d_output=%e\n", va, vb, d_output[idx]);; break;
|
||
case 2: d_output[idx] = printf("mul, \tva=%f,vb=%f,d_output=%e\n", va, vb, d_output[idx]);; break;
|
||
case 3: d_output[idx] = printf("div, \tva=%f,vb=%f,d_output=%e\n", va, vb, d_output[idx]);; break;
|
||
case 4: d_output[idx] = printf("sin, \tva=%f,vb=%f,d_output=%e\n", va, vb, d_output[idx]);; break;
|
||
case 5: d_output[idx] = printf("cos, \tva=%f,vb=%f,d_output=%e\n", va, vb, d_output[idx]);; break;
|
||
case 6: d_output[idx] = printf("log2, \tva=%f,vb=%f,d_output=%e\n", va, vb, d_output[idx]);; break;
|
||
case 7: d_output[idx] = printf("log10, \tva=%f,vb=%f,d_output=%e\n", va, vb, d_output[idx]);; break;
|
||
case 8: d_output[idx] = printf("ln, \tva=%f,vb=%f,d_output=%e\n", va, vb, d_output[idx]);; break;
|
||
case 9: d_output[idx] = printf("exp, \tva=%f,vb=%f,d_output=%e\n", va, vb, d_output[idx]);; break;
|
||
case 10: d_output[idx] = printf("pow, \tva=%f,vb=%f,d_output=%e\n", va, vb, d_output[idx]);; break;
|
||
case 11: d_output[idx] = printf("sqrt, \tva=%f,vb=%f,d_output=%e\n", va, vb, d_output[idx]);; break;
|
||
}
|
||
|
||
}
|
||
|
||
}
|
||
}
|
||
|
||
void test_function(int operation, const char* operation_name) {
|
||
const int size = 1024;
|
||
double* h_input = new double[size];
|
||
double* h_output = new double[size];
|
||
double* d_input;
|
||
double* d_output;
|
||
|
||
// 初始化数据
|
||
for (int i = 0; i < size; ++i) {
|
||
h_input[i] = static_cast<double>(i)*100000.0 + 0.1234564324324232421421421421* 100000.0;
|
||
}
|
||
|
||
// 分配设备内存
|
||
cudaMalloc(&d_input, size * sizeof(double));
|
||
cudaMalloc(&d_output, size * sizeof(double));
|
||
cudaMemcpy(d_input, h_input, size * sizeof(double), cudaMemcpyHostToDevice);
|
||
|
||
// 启动 CUDA 内核
|
||
auto start = std::chrono::high_resolution_clock::now();
|
||
test_kernel << <(size + 255) / 256, 256 >> > (d_input, d_output, size, operation);
|
||
cudaDeviceSynchronize();
|
||
auto end = std::chrono::high_resolution_clock::now();
|
||
std::chrono::duration<double> elapsed = end - start;
|
||
std::cout << operation_name << " time: " << elapsed.count() << " seconds" << std::endl;
|
||
|
||
// 复制结果回主机
|
||
cudaMemcpy(h_output, d_output, size * sizeof(double), cudaMemcpyDeviceToHost);
|
||
|
||
// 计算精度
|
||
double total_error = 0.0;
|
||
for (int i = 0; i < size; ++i) {
|
||
|
||
double error = std::abs(h_output[i]);
|
||
total_error += error;
|
||
}
|
||
double average_error = total_error / size;
|
||
std::cout << operation_name << " average error: " << average_error << std::endl;
|
||
std::cout << operation_name << " average error: " << average_error << std::endl;
|
||
|
||
// 释放内存
|
||
delete[] h_input;
|
||
delete[] h_output;
|
||
cudaFree(d_input);
|
||
cudaFree(d_output);
|
||
}
|
||
|
||
|
||
__global__ void time_test_kernel(double* d_input, double* d_output, int size, int operation) {
|
||
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||
if (idx < size) {
|
||
double va = d_input[idx];
|
||
double vb = va + 1.0;
|
||
double32 a = double_to_double32(va);
|
||
double32 b = double_to_double32(vb); // 用于二元操作的第二个操作数
|
||
double result = 0.0;
|
||
for (long i = 0; i< 1000000; i++) {
|
||
switch (operation) {
|
||
case 0: result+= (double32_add(a, b).high); break;
|
||
case 1: result+= (double32_sub(a, b).high); break;
|
||
case 2: result+= (double32_mul(a, b).high); break;
|
||
case 3: result+= (double32_div(a, b).high); break;
|
||
case 4: result+= (double32_sin(a).high); break;
|
||
case 5: result+= (double32_cos(a).high); break;
|
||
case 6: result+= (double32_log2(a).high); break;
|
||
case 7: result+= (double32_log10(a).high); break;
|
||
case 8: result+= (double32_ln(a).high); break;
|
||
case 9: result+= (double32_exp(a).high); break;
|
||
case 10: result+= (double32_pow(a, b).high); break;
|
||
case 11: result+= (double32_sqrt(a).high); break;
|
||
}
|
||
}
|
||
d_output[idx]=result;
|
||
}
|
||
}
|
||
|
||
__global__ void time_test_double_kernel(double* d_input, double* d_output, int size, int operation) {
|
||
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||
if (idx < size) {
|
||
double va = d_input[idx];
|
||
double vb = va + 1.0;
|
||
double32 a = double_to_double32(va);
|
||
double32 b = double_to_double32(vb); // 用于二元操作的第二个操作数
|
||
double result = 0.0;
|
||
for (long i = 0; i < 1000000; i++) {
|
||
switch (operation) {
|
||
case 0: result+= (va + vb); break;
|
||
case 1: result+= (va - vb); break;
|
||
case 2: result+= (va * vb); break;
|
||
case 3: result+= (va / vb); break;
|
||
case 4: result+= sin(va); break;
|
||
case 5: result+= cos(va); break;
|
||
case 6: result+= log2(va); break;
|
||
case 7: result+= log10(va); break;
|
||
case 8: result+= log(va); break;
|
||
case 9: result+= exp(va); break;
|
||
case 10:result+= pow(va, vb); break;
|
||
case 11:result+= sqrt(va); break;
|
||
}
|
||
}
|
||
d_output[idx] = result;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
void test_double_to_double32() {
|
||
const int size = 1024;
|
||
double* h_input = new double[size];
|
||
double* h_output = new double[size];
|
||
double* d_input;
|
||
double* d_output;
|
||
|
||
// 初始化数据
|
||
for (int i = 0; i < size; ++i) {
|
||
h_input[i] = static_cast<double>(i) * 1000000.0 + 0.123456789011 * 1000000.0;
|
||
}
|
||
|
||
// 分配设备内存
|
||
cudaMalloc(&d_input, size * sizeof(double));
|
||
cudaMalloc(&d_output, size * sizeof(double));
|
||
cudaMemcpy(d_input, h_input, size * sizeof(double), cudaMemcpyHostToDevice);
|
||
|
||
// 启动 CUDA 内核
|
||
auto start = std::chrono::high_resolution_clock::now();
|
||
test_double_to_double32_kernel << <(size + 255) / 256, 256 >> > (d_input, d_output, size);
|
||
cudaDeviceSynchronize();
|
||
auto end = std::chrono::high_resolution_clock::now();
|
||
std::chrono::duration<double> elapsed = end - start;
|
||
std::cout << "double_to_double32 conversion time: " << elapsed.count() << " seconds" << std::endl;
|
||
|
||
// 复制结果回主机
|
||
cudaMemcpy(h_output, d_output, size * sizeof(double), cudaMemcpyDeviceToHost);
|
||
|
||
// 计算精度
|
||
double total_error = 0.0;
|
||
for (int i = 0; i < size; ++i) {
|
||
double error = std::abs(h_output[i]);
|
||
total_error += error;
|
||
}
|
||
double average_error = total_error / size;
|
||
std::cout << "double_to_double32 average error: " << average_error << std::endl;
|
||
|
||
// 计算有效位数
|
||
double effective_digits = -std::log10(average_error);
|
||
std::cout << "double_to_double32 effective digits: " << effective_digits << std::endl;
|
||
|
||
// 释放内存
|
||
delete[] h_input;
|
||
delete[] h_output;
|
||
cudaFree(d_input);
|
||
cudaFree(d_output);
|
||
}
|
||
|
||
|
||
void time_test_function(int operation, const char* operation_name) {
|
||
const int size = 1024;
|
||
double* h_input = new double[size];
|
||
double* h_output = new double[size];
|
||
double* d_input;
|
||
double* d_output;
|
||
|
||
// 初始化数据
|
||
for (int i = 0; i < size; ++i) {
|
||
h_input[i] = static_cast<double>(i) * 100000.0 + 0.1234564324324232421421421421 * 100000.0;
|
||
}
|
||
|
||
// 分配设备内存
|
||
cudaMalloc(&d_input, size * sizeof(double));
|
||
cudaMalloc(&d_output, size * sizeof(double));
|
||
cudaMemcpy(d_input, h_input, size * sizeof(double), cudaMemcpyHostToDevice);
|
||
|
||
// 启动 CUDA 内核 (double32)
|
||
auto start = std::chrono::high_resolution_clock::now();
|
||
time_test_kernel << <(size + 255) / 256, 256 >> > (d_input, d_output, size, operation);
|
||
cudaDeviceSynchronize();
|
||
auto end = std::chrono::high_resolution_clock::now();
|
||
std::chrono::duration<double> elapsed = end - start;
|
||
std::cout << operation_name << " (double32) time: " << elapsed.count() << " seconds" << std::endl;
|
||
|
||
// 复制结果回主机
|
||
cudaMemcpy(h_output, d_output, size * sizeof(double), cudaMemcpyDeviceToHost);
|
||
|
||
// 计算精度
|
||
double total_error = 0.0;
|
||
for (int i = 0; i < size; ++i) {
|
||
double error = std::abs(h_output[i]);
|
||
total_error += error;
|
||
}
|
||
double average_error = total_error / size;
|
||
std::cout << operation_name << " (double32) average error: " << average_error << std::endl;
|
||
|
||
// 启动 CUDA 内核 (double)
|
||
start = std::chrono::high_resolution_clock::now();
|
||
time_test_double_kernel << <(size + 255) / 256, 256 >> > (d_input, d_output, size, operation);
|
||
cudaDeviceSynchronize();
|
||
end = std::chrono::high_resolution_clock::now();
|
||
elapsed = end - start;
|
||
std::cout << operation_name << " (double) time: " << elapsed.count() << " seconds" << std::endl;
|
||
|
||
// 复制结果回主机
|
||
cudaMemcpy(h_output, d_output, size * sizeof(double), cudaMemcpyDeviceToHost);
|
||
|
||
// 计算精度
|
||
total_error = 0.0;
|
||
for (int i = 0; i < size; ++i) {
|
||
double error = std::abs(h_output[i]);
|
||
total_error += error;
|
||
}
|
||
average_error = total_error / size;
|
||
std::cout << operation_name << " (double) average error: " << average_error << std::endl;
|
||
|
||
// 释放内存
|
||
delete[] h_input;
|
||
delete[] h_output;
|
||
cudaFree(d_input);
|
||
cudaFree(d_output);
|
||
}
|
||
|
||
void time_test_double_to_double32() {
|
||
const int size = 1024;
|
||
double* h_input = new double[size];
|
||
double* h_output = new double[size];
|
||
double* d_input;
|
||
double* d_output;
|
||
|
||
// 初始化数据
|
||
for (int i = 0; i < size; ++i) {
|
||
h_input[i] = static_cast<double>(i) * 1000000.0 + 0.123456789011 * 1000000.0;
|
||
}
|
||
|
||
// 分配设备内存
|
||
cudaMalloc(&d_input, size * sizeof(double));
|
||
cudaMalloc(&d_output, size * sizeof(double));
|
||
cudaMemcpy(d_input, h_input, size * sizeof(double), cudaMemcpyHostToDevice);
|
||
|
||
// 启动 CUDA 内核
|
||
auto start = std::chrono::high_resolution_clock::now();
|
||
test_double_to_double32_kernel << <(size + 255) / 256, 256 >> > (d_input, d_output, size);
|
||
cudaDeviceSynchronize();
|
||
auto end = std::chrono::high_resolution_clock::now();
|
||
std::chrono::duration<double> elapsed = end - start;
|
||
std::cout << "double_to_double32 conversion time: " << elapsed.count() << " seconds" << std::endl;
|
||
|
||
// 复制结果回主机
|
||
cudaMemcpy(h_output, d_output, size * sizeof(double), cudaMemcpyDeviceToHost);
|
||
|
||
// 计算精度
|
||
double total_error = 0.0;
|
||
for (int i = 0; i < size; ++i) {
|
||
double error = std::abs(h_output[i]);
|
||
total_error += error;
|
||
}
|
||
double average_error = total_error / size;
|
||
std::cout << "double_to_double32 average error: " << average_error << std::endl;
|
||
|
||
// 计算有效位数
|
||
double effective_digits = -std::log10(average_error);
|
||
std::cout << "double_to_double32 effective digits: " << effective_digits << std::endl;
|
||
|
||
// 释放内存
|
||
delete[] h_input;
|
||
delete[] h_output;
|
||
cudaFree(d_input);
|
||
cudaFree(d_output);
|
||
}
|
||
|
||
|
||
|
||
void time_test_add() { time_test_function(0, "Addition"); }
|
||
void time_test_sub() { time_test_function(1, "Subtraction"); }
|
||
void time_test_mul() { time_test_function(2, "Multiplication"); }
|
||
void time_test_div() { time_test_function(3, "Division"); }
|
||
void time_test_sin() { time_test_function(4, "Sine"); }
|
||
void time_test_cos() { time_test_function(5, "Cosine"); }
|
||
void time_test_log2() { time_test_function(6, "Log2"); }
|
||
void time_test_log10() { time_test_function(7, "Log10"); }
|
||
void time_test_ln() { time_test_function(8, "Natural Logarithm"); }
|
||
void time_test_exp() { time_test_function(9, "Exponential"); }
|
||
void time_test_pow() { time_test_function(10, "Power"); }
|
||
void time_test_sqrt() { time_test_function(11, "Square Root"); }
|