#include #include #include #include #include #include #include #include #include "BaseConstVariable.h" #include "GPUTool.cuh" #include "GPUBPTool.cuh" #include #include // 向量运算 __device__ __host__ Vector3 vec_sub(Vector3 a, Vector3 b) { return { a.x - b.x, a.y - b.y, a.z - b.z }; } __device__ __host__ double vec_dot(Vector3 a, Vector3 b) { return a.x * b.x + a.y * b.y + a.z * b.z; } __device__ __host__ Vector3 vec_cross(Vector3 a, Vector3 b) { return { a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x }; } __device__ __host__ Vector3 vec_normalize(Vector3 v) { double len = sqrt(vec_dot(v, v)); return (len > 1e-12) ? Vector3 { v.x / len, v.y / len, v.z / len } : v; } // 计算视线交点T extern __device__ __host__ Vector3 compute_T(Vector3 S, Vector3 ray, double H) { Vector3 dir = vec_normalize(ray); double a_h = WGS84_A + H; double A = (dir.x * dir.x + dir.y * dir.y) / (a_h * a_h) + dir.z * dir.z / (WGS84_B * WGS84_B); double B = 2.0 * (S.x * dir.x / (a_h * a_h) + S.y * dir.y / (a_h * a_h) + S.z * dir.z / (WGS84_B * WGS84_B)); double C = (S.x * S.x + S.y * S.y) / (a_h * a_h) + S.z * S.z / (WGS84_B * WGS84_B) - 1.0; double disc = B * B - 4 * A * C; if (disc < 0) return Vector3 { NAN, NAN, NAN }; double sqrt_d = sqrt(disc); double t = fmax((-B - sqrt_d) / (2 * A), (-B + sqrt_d) / (2 * A)); return (t > 1e-6) ? Vector3 { S.x + dir.x * t, S.y + dir.y * t, S.z + dir.z * t } : Vector3 { NAN, NAN, NAN }; } // 构建平面基底 extern __device__ __host__ void compute_basis(Vector3 S, Vector3 T, Vector3* e1, Vector3* e2) { Vector3 ST = vec_normalize(vec_sub(T, S)); Vector3 SO = vec_normalize(vec_sub(Vector3 { 0, 0, 0 }, S)); // S->O方向 *e1 = vec_normalize(vec_cross(ST, SO)); *e2 = vec_normalize(vec_cross(*e1, ST)); } // 牛顿迭代法 extern __device__ __host__ int newton_solve(Vector3 S, Vector3 e1, Vector3 e2, double R, double H, double* u, double* v) { double a_h = WGS84_A + H; for (int iter = 0; iter < MAX_ITER; ++iter) { Vector3 P = { S.x + e1.x * (*u) + e2.x * (*v), S.y + e1.y * (*u) + e2.y * (*v), S.z + e1.z * (*u) + e2.z * (*v) }; // 残差计算 double f1 = (P.x * P.x + P.y * P.y) / (a_h * a_h) + P.z * P.z / (WGS84_B * WGS84_B) - 1.0; double f2 = (*u) * (*u) + (*v) * (*v) - R * R; if (fabs(f1) < 1e-8 && fabs(f2) < 1e-8) return 1; // 雅可比矩阵 double J11 = (2 * (S.x + e1.x * (*u) + e2.x * (*v)) * e1.x) / (a_h * a_h) + (2 * (S.z + e1.z * (*u) + e2.z * (*v)) * e1.z) / (WGS84_B * WGS84_B); double J12 = (2 * (S.x + e1.x * (*u) + e2.x * (*v)) * e2.x) / (a_h * a_h) + (2 * (S.z + e1.z * (*u) + e2.z * (*v)) * e2.z) / (WGS84_B * WGS84_B); double J21 = 2 * (*u); double J22 = 2 * (*v); // 矩阵求逆 double det = J11 * J22 - J12 * J21; if (fabs(det) < 1e-12) break; double delta_u = (-J22 * f1 + J12 * f2) / det; double delta_v = (J21 * f1 - J11 * f2) / det; *u += delta_u; *v += delta_v; } return 0; } // 主计算函数A extern __device__ __host__ Vector3 compute_P(Vector3 S, Vector3 T, double R, double H) { Vector3 e1, e2; compute_basis(S, T, &e1, &e2); // 计算参考角度方向 Vector3 ST_vec = vec_sub(T, S); Vector3 SO_vec = vec_sub(Vector3 { 0, 0, 0 }, S); Vector3 ref_cross = vec_cross(SO_vec, ST_vec); double ref_sign = ref_cross.z; // 取Z分量判断方向 Vector3 best_P = { NAN, NAN, NAN }; double min_dist = INFINITY; // 圆周采样 const int samples = 36; for (int i = 0; i < samples; ++i) { double angle = 2 * M_PI * i / samples; double u = R * cos(angle); double v = R * sin(angle); if (!newton_solve(S, e1, e2, R, H, &u, &v)) continue; Vector3 P = { S.x + e1.x * u + e2.x * v, S.y + e1.y * u + e2.y * v, S.z + e1.z * u + e2.z * v }; // 椭球验证 double check = (P.x * P.x + P.y * P.y) / ((WGS84_A + H) * (WGS84_A + H)) + P.z * P.z / (WGS84_B * WGS84_B); if (fabs(check - 1.0) > 1e-6) continue; // 角度方向验证 Vector3 SP_vec = vec_sub(P, S); Vector3 cur_cross = vec_cross(SP_vec, ST_vec); if (ref_sign * cur_cross.z < 0) continue; // 选择最近点 double dist = vec_dot(vec_sub(P, T), vec_sub(P, T)); if (dist < min_dist) { min_dist = dist; best_P = P; } } return best_P; } //// 参数校验与主函数 //int main() { // Vector3 S = { -2.8e6, -4.2e6, 3.5e6 }; // 卫星位置 (m) // Vector3 ray = { 0.6, 0.4, -0.7 }; // 视线方向 // double H = 500.0; // 平均高程 // double R = 1000.0; // 目标距离 // // // 参数校验 // if (R <= 0 || H < -WGS84_A * 0.1 || H > WGS84_A * 0.1) { // printf("参数错误:\n H范围:±%.1f km\n R必须>0\n", WGS84_A * 0.1 / 1000); // return 1; // } // // // Step 1: 计算交点T // Vector3 T = compute_T(S, ray, H); // if (isnan(T.x)) { // printf("错误:视线未与椭球相交\n"); // return 1; // } // // // Step 2: 计算目标点P // Vector3 P = compute_P(S, T, R, H); // // if (!isnan(P.x)) { // printf("计算结果:\n"); // printf("P = (%.3f, %.3f, %.3f) m\n", P.x, P.y, P.z); // // // 验证距离 // Vector3 SP = vec_sub(P, S); // double dist = sqrt(vec_dot(SP, SP)); // printf("实际距离:%.3f m (期望:%.1f m)\n", dist, R); // // // 验证椭球 // double check = (P.x * P.x + P.y * P.y) / ((WGS84_A + H) * (WGS84_A + H)) // + P.z * P.z / (WGS84_B * WGS84_B); // printf("椭球验证:%.6f (期望:1.0)\n", check); // // // 验证最近距离 // Vector3 PT = vec_sub(P, T); // printf("到T点距离:%.3f m\n", sqrt(vec_dot(PT, PT))); // } // else { // printf("未找到有效解\n"); // } // // return 0; //} //