#include #include #include #include #include #include "BaseConstVariable.h" #include "GPURFPC_single.cuh" #ifdef __CUDANVCC___ /* 机器函数 ****************************************************************************************************************************/ extern __device__ float GPU_getSigma0dB_single(CUDASigmaParam_single param, float theta) {//线性值 float sigma = param.p1 + param.p2 * exp(-param.p3 * theta) + param.p4 * cos(param.p5 * theta + param.p6); return sigma; } extern __device__ float GPU_getSigma0dB_single(const float p1, const float p2, const float p3, const float p4, const float p5, const float p6, float theta) { return p1 + p2 * expf(-p3 * theta) + p4 * cosf(p5 * theta + p6); } extern __device__ CUDAVectorEllipsoidal GPU_SatelliteAntDirectNormal_single( float RstX, float RstY, float RstZ, float AntXaxisX, float AntXaxisY, float AntXaxisZ, float AntYaxisX, float AntYaxisY, float AntYaxisZ, float AntZaxisX, float AntZaxisY, float AntZaxisZ, float AntDirectX, float AntDirectY, float AntDirectZ ) { CUDAVectorEllipsoidal result{ 0,0,-1 }; // 求解天线增益 float Xst = -1 * RstX; // 卫星 --> 地面 float Yst = -1 * RstY; float Zst = -1 * RstZ; // 归一化 float RstNorm = sqrtf(Xst * Xst + Yst * Yst + Zst * Zst); float AntXaxisNorm = sqrtf(AntXaxisX * AntXaxisX + AntXaxisY * AntXaxisY + AntXaxisZ * AntXaxisZ); float AntYaxisNorm = sqrtf(AntYaxisX * AntYaxisX + AntYaxisY * AntYaxisY + AntYaxisZ * AntYaxisZ); float AntZaxisNorm = sqrtf(AntZaxisX * AntZaxisX + AntZaxisY * AntZaxisY + AntZaxisZ * AntZaxisZ); float Rx = Xst / RstNorm; float Ry = Yst / RstNorm; float Rz = Zst / RstNorm; float Xx = AntXaxisX / AntXaxisNorm; float Xy = AntXaxisY / AntXaxisNorm; float Xz = AntXaxisZ / AntXaxisNorm; float Yx = AntYaxisX / AntYaxisNorm; float Yy = AntYaxisY / AntYaxisNorm; float Yz = AntYaxisZ / AntYaxisNorm; float Zx = AntZaxisX / AntZaxisNorm; float Zy = AntZaxisY / AntZaxisNorm; float Zz = AntZaxisZ / AntZaxisNorm; float Xant = (Rx * Yy * Zz - Rx * Yz * Zy - Ry * Yx * Zz + Ry * Yz * Zx + Rz * Yx * Zy - Rz * Yy * Zx) / (Xx * Yy * Zz - Xx * Yz * Zy - Xy * Yx * Zz + Xy * Yz * Zx + Xz * Yx * Zy - Xz * Yy * Zx); float Yant = -(Rx * Xy * Zz - Rx * Xz * Zy - Ry * Xx * Zz + Ry * Xz * Zx + Rz * Xx * Zy - Rz * Xy * Zx) / (Xx * Yy * Zz - Xx * Yz * Zy - Xy * Yx * Zz + Xy * Yz * Zx + Xz * Yx * Zy - Xz * Yy * Zx); float Zant = (Rx * Xy * Yz - Rx * Xz * Yy - Ry * Xx * Yz + Ry * Xz * Yx + Rz * Xx * Yy - Rz * Xy * Yx) / (Xx * Yy * Zz - Xx * Yz * Zy - Xy * Yx * Zz + Xy * Yz * Zx + Xz * Yx * Zy - Xz * Yy * Zx); // 计算theta 与 phi float Norm = sqrtf(Xant * Xant + Yant * Yant + Zant * Zant); // 计算 pho float Zn = Zant / Norm; float ThetaAnt = ( - 1 > Zn) ? PI : (Zn > 1 ? 0 : acos(Zn));// acosf(Zant / Norm); // theta 与 Z轴的夹角 float PhiAnt = abs(Xant) 0) { PhiAnt = PI / 2; } else { PhiAnt = -PI / 2; } } else if (Xant < 0) { if (Yant > 0) { PhiAnt = PI + PhiAnt; } else { PhiAnt = -PI + PhiAnt; } } else { // Xant>0 X 正轴 } if (isnan(PhiAnt)) { printf("V=[%f,%f,%f];norm=%f;thetaAnt=%f;phiAnt=%f;\n", Xant, Yant, Zant, Norm, ThetaAnt, PhiAnt); } result.theta = ThetaAnt; result.phi = PhiAnt; result.Rho = Norm; return result; } extern __device__ float GPU_BillerInterpAntPattern_single(float* antpattern, float starttheta, float startphi, float dtheta, float dphi, long thetapoints, long phipoints, float searththeta, float searchphi) { float stheta = searththeta; float sphi = searchphi; if (stheta > 90) { return 0; } else {} float pthetaid = (stheta - starttheta) / dtheta;// float pphiid = (sphi - startphi) / dphi; long lasttheta = floorf(pthetaid); long nextTheta = lasttheta + 1; long lastphi = floorf(pphiid); long nextPhi = lastphi + 1; if (lasttheta < 0 || nextTheta < 0 || lastphi < 0 || nextPhi < 0 || lasttheta >= thetapoints || nextTheta >= thetapoints || lastphi >= phipoints || nextPhi >= phipoints) { return 0; } else { float x = stheta; float y = sphi; float x1 = lasttheta * dtheta + starttheta; float x2 = nextTheta * dtheta + starttheta; float y1 = lastphi * dphi + startphi; float y2 = nextPhi * dphi + startphi; float z11 = antpattern[lasttheta * phipoints + lastphi]; float z12 = antpattern[lasttheta * phipoints + nextPhi]; float z21 = antpattern[nextTheta * phipoints + lastphi]; float z22 = antpattern[nextTheta * phipoints + nextPhi]; //z11 = powf(10, z11 / 10); // dB-> 线性 //z12 = powf(10, z12 / 10); //z21 = powf(10, z21 / 10); //z22 = powf(10, z22 / 10); float GainValue = (z11 * (x2 - x) * (y2 - y) + z21 * (x - x1) * (y2 - y) + z12 * (x2 - x) * (y - y1) + z22 * (x - x1) * (y - y1)); GainValue = GainValue / ((x2 - x1) * (y2 - y1)); return GainValue; } } /* 核函数 ****************************************************************************************************************************/ // 计算每块 __global__ void CUDA_Kernel_Computer_R_amp_single( float* antX, float* antY, float* antZ, float* antXaxisX, float* antXaxisY, float* antXaxisZ, float* antYaxisX, float* antYaxisY, float* antYaxisZ, float* antZaxisX, float* antZaxisY, float* antZaxisZ, float* antDirectX, float* antDirectY, float* antDirectZ, long PRFCount, // 整体的脉冲数, float* targetX, float* targetY, float* targetZ, long* demCls, float* demSlopeX, float* demSlopeY, float* demSlopeZ , long startPosId, long pixelcount, CUDASigmaParam_single* sigma0Paramslist, long sigmaparamslistlen, float Pt, float refPhaseRange, float* TransAntpattern, float Transtarttheta, float Transstartphi, float Transdtheta, float Transdphi, int Transthetapoints, int Transphipoints, float* ReceiveAntpattern, float Receivestarttheta, float Receivestartphi, float Receivedtheta, float Receivedphi, int Receivethetapoints, int Receivephipoints, float maxTransAntPatternValue, float maxReceiveAntPatternValue, float NearR, float FarR, float* d_temp_R, float* d_temp_amps// 计算输出 ) { long idx = blockIdx.x * blockDim.x + threadIdx.x; // 获取当前的线程编码 long prfId = idx / SHAREMEMORY_FLOAT_HALF; long posId = idx % SHAREMEMORY_FLOAT_HALF+ startPosId; // 当前线程对应的影像点 if (prfId < PRFCount && posId < pixelcount) { float RstX = antX[prfId] - targetX[posId]; // 计算坐标矢量 float RstY = antY[prfId] - targetY[posId]; float RstZ = antZ[prfId] - targetZ[posId]; float RstR = sqrt(RstX * RstX + RstY * RstY + RstZ * RstZ); // 矢量距离 if (RstRFarR) { d_temp_R[idx] = 0; d_temp_amps[idx] = 0; return; } else { float slopeX = demSlopeX[posId]; float slopeY = demSlopeY[posId]; float slopeZ = demSlopeZ[posId]; float slopR = sqrtf(slopeX * slopeX + slopeY * slopeY + slopeZ * slopeZ); // if (abs(slopR - 0) > 1e-3) { float dotAB = RstX * slopeX + RstY * slopeY + RstZ * slopeZ; float localangle = acos(dotAB / (RstR * slopR)); if (localangle < 0 || localangle >= LAMP_CUDA_PI / 2|| isnan(localangle)) { d_temp_R[idx] = 0; d_temp_amps[idx] = 0; return; } else {} float ampGain = 0; // 求解天线方向图指向 CUDAVectorEllipsoidal antVector = GPU_SatelliteAntDirectNormal_single( RstX, RstY, RstZ, antXaxisX[prfId], antXaxisY[prfId], antXaxisZ[prfId], antYaxisX[prfId], antYaxisY[prfId], antYaxisZ[prfId], antZaxisX[prfId], antZaxisY[prfId], antZaxisZ[prfId], antDirectX[prfId], antDirectY[prfId], antDirectZ[prfId] ); antVector.theta = antVector.theta * r2d; antVector.phi = antVector.phi * r2d; //printf("theta: %f , phi: %f \n", antVector.theta, antVector.phi); if (antVector.Rho > 0) { //float TansantPatternGain = GPU_BillerInterpAntPattern( // TransAntpattern, // Transtarttheta, Transstartphi, Transdtheta, Transdphi, Transthetapoints, Transphipoints, // antVector.theta, antVector.phi); //float antPatternGain = GPU_BillerInterpAntPattern( // ReceiveAntpattern, // Receivestarttheta, Receivestartphi, Receivedtheta, Receivedphi, Receivethetapoints, Receivephipoints, // antVector.theta, antVector.phi); float sigma0 = 0; { long clsid = demCls[posId]; //printf("clsid=%d\n", clsid); CUDASigmaParam_single tempsigma = sigma0Paramslist[clsid]; if (abs(tempsigma.p1) < PRECISIONTOLERANCE && abs(tempsigma.p2) < PRECISIONTOLERANCE && abs(tempsigma.p3) < PRECISIONTOLERANCE && abs(tempsigma.p4) < PRECISIONTOLERANCE && abs(tempsigma.p5) < PRECISIONTOLERANCE && abs(tempsigma.p6) < PRECISIONTOLERANCE ) { sigma0 = 0; } else { float sigma = GPU_getSigma0dB_single(tempsigma, localangle); sigma0 = powf(10.0, sigma / 10.0); } } //ampGain = TansantPatternGain * antPatternGain; ampGain = 1; //if (10 * log10(ampGain / maxReceiveAntPatternValue / maxTransAntPatternValue) < -3) { // 小于-3dB // d_temp_R[idx] = 0; // d_temp_amps[idx] = 0; // return; //} //else {} ampGain = ampGain / (powf(4 * LAMP_CUDA_PI, 2) * powf(RstR, 4)); // 反射强度 float temp_amp = float(ampGain * Pt * sigma0); float temp_R = float(RstR - refPhaseRange); if (isnan(temp_amp) || isnan(temp_R)|| isinf(temp_amp) || isinf(temp_R)) { printf("amp is nan or R is nan,amp=%f;R=%f; \n", temp_amp, temp_R); d_temp_R[idx] = 0; d_temp_amps[idx] = 0; return; } else {} d_temp_amps[idx] = temp_amp; d_temp_R[idx] = temp_R; return; } else { d_temp_R[idx] = 0; d_temp_amps[idx] = 0; return; } } else { d_temp_R[idx] = 0; d_temp_amps[idx] = 0; return; } } } } __global__ void CUDA_Kernel_Computer_echo_single( float* d_temp_R, float* d_temp_amps, long posNum, float f0, float dfreq, long FreqPoints, // 当前频率的分块 long maxfreqnum, // 最大脉冲值 float* d_temp_echo_real, float* d_temp_echo_imag, long temp_PRF_Count ) { __shared__ float s_R[SHAREMEMORY_FLOAT_HALF]; // 注意一个完整的block_size 共享相同内存 __shared__ float s_amp[SHAREMEMORY_FLOAT_HALF]; long tid = threadIdx.x; long bid = blockIdx.x; long idx = bid * blockDim.x + tid; long prfId = idx / FreqPoints; // 脉冲ID long fId = idx % FreqPoints;//频率ID long psid = 0; long pixelId = 0; for (long ii = 0; ii < SHAREMEMORY_FLOAT_HALF_STEP; ii++) { // SHAREMEMORY_FLOAT_HALF_STEP * BLOCK_SIZE=SHAREMEMORY_FLOAT_HALF psid = tid * SHAREMEMORY_FLOAT_HALF_STEP + ii; pixelId = prfId * posNum + psid; // if (psid < posNum) { s_R[psid] = d_temp_R[pixelId]; s_amp[psid] = d_temp_amps[pixelId]; } else { s_R[psid] = 0; s_amp[psid] = 0; } } __syncthreads(); // 确定所有待处理数据都已经进入程序中 if (fId < maxfreqnum && prfId < temp_PRF_Count) { long echo_ID = prfId * maxfreqnum + fId; // 计算对应的回波位置 float factorjTemp = RFPCPIDIVLIGHT * (f0 + fId * dfreq); float temp_real = 0; float temp_imag = 0; float temp_phi = 0; float temp_amp = 0; for (long dataid = 0; dataid < SHAREMEMORY_FLOAT_HALF; dataid++) { temp_phi = s_R[dataid] * factorjTemp; temp_amp = s_amp[dataid]; temp_real += (temp_amp * cosf(temp_phi)); temp_imag += (temp_amp * sinf(temp_phi)); //if (dataid > 5000) { // printf("echo_ID=%d; dataid=%d;ehodata=(%f,%f);R=%f;amp=%f;\n", echo_ID, dataid, temp_real, temp_imag, s_R[0], s_amp[0]); //} if (isnan(temp_phi) || isnan(temp_amp) || isnan(temp_real) || isnan(temp_imag) || isinf(temp_phi) || isinf(temp_amp) || isinf(temp_real) || isinf(temp_imag) ) { printf("[amp,phi,real,imag]=[%f,%f,%f,%f];\n",temp_amp,temp_phi,temp_real,temp_imag); } } //printf("echo_ID=%d; ehodata=(%f,%f)\n", echo_ID, temp_real, temp_imag); //printf("(%f %f %f) ", factorjTemp, s_amp[0], s_R[0]); d_temp_echo_real[echo_ID] += /*d_temp_echo_real[echo_ID] + */temp_real; d_temp_echo_imag[echo_ID] += /*d_temp_echo_imag[echo_ID] +*/ temp_imag; } } /** * 分块计算主流程 */ void CUDA_RFPC_MainProcess_single( float* antX, float* antY, float* antZ, float* antXaxisX, float* antXaxisY, float* antXaxisZ, float* antYaxisX, float* antYaxisY, float* antYaxisZ, float* antZaxisX, float* antZaxisY, float* antZaxisZ, float* antDirectX, float* antDirectY, float* antDirectZ, long PRFCount, long FreqNum, float f0, float dfreq, float Pt, float refPhaseRange, float* TransAntpattern, float Transtarttheta, float Transstartphi, float Transdtheta, float Transdphi, int Transthetapoints, int Transphipoints, float* ReceiveAntpattern, float Receivestarttheta, float Receivestartphi, float Receivedtheta, float Receivedphi, int Receivethetapoints, int Receivephipoints, float maxTransAntPatternValue, float maxReceiveAntPatternValue, float NearR, float FarR, float* targetX, float* targetY, float* targetZ, long* demCls, long TargetNumber, float* demSlopeX, float* demSlopeY, float* demSlopeZ, CUDASigmaParam_single* sigma0Paramslist, long sigmaparamslistlen, float* out_echoReal, float* out_echoImag, float* d_temp_R, float* d_temp_amp ) { long BLOCK_FREQNUM = NextBlockPad(FreqNum, BLOCK_SIZE); // 256*freqBlockID long cudaBlocknum = 0; long freqpoints = BLOCK_FREQNUM; printf("freqpoints:%d\n", freqpoints); long process = 0; for (long sTi = 0; sTi < TargetNumber; sTi = sTi + SHAREMEMORY_FLOAT_HALF) { cudaBlocknum = (PRFCount * SHAREMEMORY_FLOAT_HALF + BLOCK_SIZE - 1) / BLOCK_SIZE; CUDA_Kernel_Computer_R_amp_single << > > ( antX, antY, antZ, antXaxisX, antXaxisY, antXaxisZ, antYaxisX, antYaxisY, antYaxisZ, antZaxisX, antZaxisY, antZaxisZ, antDirectX, antDirectY, antDirectZ, PRFCount, targetX, targetY, targetZ, demCls, demSlopeX, demSlopeY, demSlopeZ, sTi, TargetNumber, sigma0Paramslist, sigmaparamslistlen, Pt, refPhaseRange, TransAntpattern, Transtarttheta, Transstartphi, Transdtheta, Transdphi, Transthetapoints, Transphipoints, ReceiveAntpattern, Receivestarttheta, Receivestartphi, Receivedtheta, Receivedphi, Receivethetapoints, Receivephipoints, maxTransAntPatternValue, maxReceiveAntPatternValue, NearR, FarR, d_temp_R, d_temp_amp// 计算输出 ); PrintLasterError("CUDA_Kernel_Computer_R_amp"); cudaBlocknum = (PRFCount * BLOCK_FREQNUM + BLOCK_SIZE - 1) / BLOCK_SIZE; CUDA_Kernel_Computer_echo_single << > > ( d_temp_R, d_temp_amp, SHAREMEMORY_FLOAT_HALF, f0, dfreq, freqpoints, FreqNum, out_echoReal, out_echoImag, PRFCount ); PrintLasterError("CUDA_Kernel_Computer_echo"); if ((sTi * 100.0 / TargetNumber ) - process >= 1) { process = sTi * 100.0 / TargetNumber; PRINT("TargetID [%f]: %d / %d finished\n", sTi*100.0/ TargetNumber,sTi, TargetNumber); } } cudaDeviceSynchronize(); } #endif