#include "ImageNetOperator.h" #include "LogInfoCls.h" #include "PrintMsgToQDebug.h" #include #include "ImageOperatorBase.h" #include "GPUBaseTool.h" #include "GPUBPImageNet.cuh" #include "BaseTool.h" #include "BaseConstVariable.h" void InitCreateImageXYZProcess(QString& outImageLLPath, QString& outImageXYZPath, QString& InEchoGPSDataPath, double& NearRange, double& RangeResolution, int64_t& RangeNum) { qDebug() << "---------------------------------------------------------------------------------"; qDebug() << u8"创建粗成像平面斜距投影网格"; gdalImage antimg(InEchoGPSDataPath); qDebug() << u8"1. 回波GPS坐标点文件参数:\t"; qDebug() << u8"文件路径:\t" << InEchoGPSDataPath; qDebug() << u8"GPS 点数:\t" << antimg.height; qDebug() << u8"文件列数:\t" << antimg.width; qDebug() << u8"2.斜距网格参数:"; qDebug() << u8"近距离:\t" << NearRange; qDebug() << u8"分辨率:\t" << RangeResolution; qDebug() << u8"网格点数:\t" << RangeNum; qDebug() << u8"3.输出文件参数:"; gdalImage outimgll = CreategdalImageDouble(outImageLLPath, antimg.height,RangeNum, 3,true,true); gdalImage outimgxyz = CreategdalImageDouble(outImageXYZPath, antimg.height, RangeNum, 3, true, true); qDebug() << u8"成像平面文件(经纬度)网格路径:\t" << outImageLLPath; qDebug() << u8"成像平面文件(XYZ)网格路径:\t" << outImageXYZPath; qDebug() << u8"4.开始创建成像网格XYZ"; long prfcount = antimg.height; long rangeNum = RangeNum; double Rnear = NearRange; double dx = RangeResolution; long blockRangeCount = Memory1GB / sizeof(double) / 4 / prfcount *6; blockRangeCount = blockRangeCount < 1 ? 1 : blockRangeCount; std::shared_ptr Pxs((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr Pys((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr Pzs((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr AntDirectX((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr AntDirectY((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr AntDirectZ((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); { long colnum = 19; std::shared_ptr antpos =readDataArr(antimg,0,0,prfcount, colnum,1,GDALREADARRCOPYMETHOD::VARIABLEMETHOD); double time = 0; double Px = 0; double Py = 0; double Pz = 0; for (long i = 0; i < prfcount; i++) { Pxs.get()[i] = antpos.get()[i * 19 + 1]; // 卫星坐标 Pys.get()[i] = antpos.get()[i * 19 + 2]; Pzs.get()[i] = antpos.get()[i * 19 + 3]; AntDirectX.get()[i] = antpos.get()[i * 19 + 13];// zero doppler AntDirectY.get()[i] = antpos.get()[i * 19 + 14]; AntDirectZ.get()[i] = antpos.get()[i * 19 + 15]; double NormAnt = std::sqrt(AntDirectX.get()[i] * AntDirectX.get()[i] + AntDirectY.get()[i] * AntDirectY.get()[i] + AntDirectZ.get()[i] * AntDirectZ.get()[i]); AntDirectX.get()[i] = AntDirectX.get()[i] / NormAnt; AntDirectY.get()[i] = AntDirectY.get()[i] / NormAnt; AntDirectZ.get()[i] = AntDirectZ.get()[i] / NormAnt;// 归一化 } antpos.reset(); } std::shared_ptr d_Pxs((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice); std::shared_ptr d_Pys((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice); std::shared_ptr d_Pzs((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice); std::shared_ptr d_AntDirectX((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice); std::shared_ptr d_AntDirectY((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice); std::shared_ptr d_AntDirectZ((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice); HostToDevice(Pxs.get(), d_Pxs.get(), sizeof(double) * prfcount); HostToDevice(Pys.get(), d_Pys.get(), sizeof(double) * prfcount); HostToDevice(Pzs.get(), d_Pzs.get(), sizeof(double) * prfcount); HostToDevice(AntDirectX.get(), d_AntDirectX.get(), sizeof(double) * prfcount); HostToDevice(AntDirectY.get(), d_AntDirectY.get(), sizeof(double) * prfcount); HostToDevice(AntDirectZ.get(), d_AntDirectZ.get(), sizeof(double) * prfcount); for (long startcolidx = 0; startcolidx < RangeNum; startcolidx = startcolidx + blockRangeCount) { long tempechocol = blockRangeCount; if (startcolidx + tempechocol >= RangeNum) { tempechocol = RangeNum - startcolidx; } qDebug() << " imgxyz :\t" << startcolidx << "\t-\t" << startcolidx + tempechocol << " / " << RangeNum; std::shared_ptr demx = readDataArr(outimgxyz, 0, startcolidx, prfcount, tempechocol, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD); std::shared_ptr demy = readDataArr(outimgxyz, 0, startcolidx, prfcount, tempechocol, 2, GDALREADARRCOPYMETHOD::VARIABLEMETHOD); std::shared_ptr demz = readDataArr(outimgxyz, 0, startcolidx, prfcount, tempechocol, 3, GDALREADARRCOPYMETHOD::VARIABLEMETHOD); std::shared_ptr h_demx((double*)mallocCUDAHost(sizeof(double) * prfcount * tempechocol), FreeCUDAHost); std::shared_ptr h_demy((double*)mallocCUDAHost(sizeof(double) * prfcount * tempechocol), FreeCUDAHost); std::shared_ptr h_demz((double*)mallocCUDAHost(sizeof(double) * prfcount * tempechocol), FreeCUDAHost); #pragma omp parallel for for (long ii = 0; ii < prfcount; ii++) { for (long jj = 0; jj < tempechocol; jj++) { h_demx.get()[ii * tempechocol + jj] = demx.get()[ii * tempechocol + jj]; h_demy.get()[ii * tempechocol + jj] = demy.get()[ii * tempechocol + jj]; h_demz.get()[ii * tempechocol + jj] = demz.get()[ii * tempechocol + jj]; } } std::shared_ptr d_demx((double*)mallocCUDADevice(sizeof(double) * prfcount * tempechocol), FreeCUDADevice); std::shared_ptr d_demy((double*)mallocCUDADevice(sizeof(double) * prfcount * tempechocol), FreeCUDADevice); std::shared_ptr d_demz((double*)mallocCUDADevice(sizeof(double) * prfcount * tempechocol), FreeCUDADevice); HostToDevice(h_demx.get(), d_demx.get(), sizeof(double) * prfcount * tempechocol); HostToDevice(h_demy.get(), d_demy.get(), sizeof(double) * prfcount * tempechocol); HostToDevice(h_demz.get(), d_demz.get(), sizeof(double) * prfcount * tempechocol); TIMEBPCreateImageGrid( d_Pxs.get(), d_Pys.get(), d_Pzs.get(), d_AntDirectX.get(), d_AntDirectY.get(), d_AntDirectZ.get(), d_demx.get(), d_demy.get(), d_demz.get(), prfcount, tempechocol, 0, Rnear + dx * startcolidx, dx // 更新最近修读 ); DeviceToHost(h_demx.get(), d_demx.get(), sizeof(double) * prfcount * tempechocol); DeviceToHost(h_demy.get(), d_demy.get(), sizeof(double) * prfcount * tempechocol); DeviceToHost(h_demz.get(), d_demz.get(), sizeof(double) * prfcount * tempechocol); #pragma omp parallel for for (long ii = 0; ii < prfcount; ii++) { for (long jj = 0; jj < tempechocol; jj++) { demx.get()[ii * tempechocol + jj] = h_demx.get()[ii * tempechocol + jj]; demy.get()[ii * tempechocol + jj] = h_demy.get()[ii * tempechocol + jj]; demz.get()[ii * tempechocol + jj] = h_demz.get()[ii * tempechocol + jj]; } } outimgxyz.saveImage(demx, 0, startcolidx, prfcount, tempechocol, 1); outimgxyz.saveImage(demy, 0, startcolidx, prfcount, tempechocol, 2); outimgxyz.saveImage(demz, 0, startcolidx, prfcount, tempechocol, 3); // 将XYZ转换为经纬度 std::shared_ptr demllx = readDataArr(outimgll, 0, startcolidx, prfcount, tempechocol, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD); std::shared_ptr demlly = readDataArr(outimgll, 0, startcolidx, prfcount, tempechocol, 2, GDALREADARRCOPYMETHOD::VARIABLEMETHOD); std::shared_ptr demllz = readDataArr(outimgll, 0, startcolidx, prfcount, tempechocol, 3, GDALREADARRCOPYMETHOD::VARIABLEMETHOD); #pragma omp parallel for for (long ii = 0; ii < prfcount; ii++) { for (long jj = 0; jj < tempechocol; jj++) { double x = demx.get()[ii * tempechocol + jj]; double y = demy.get()[ii * tempechocol + jj]; double z = demz.get()[ii * tempechocol + jj]; Landpoint point; XYZ2BLH_FixedHeight(x, y, z, 0, point); demllx.get()[ii * tempechocol + jj] = point.lon; demlly.get()[ii * tempechocol + jj] = point.lat; demllz.get()[ii * tempechocol + jj] = point.ati; } } outimgll.saveImage(demllx, 0, startcolidx, prfcount, tempechocol, 1); outimgll.saveImage(demlly, 0, startcolidx, prfcount, tempechocol, 2); outimgll.saveImage(demllz, 0, startcolidx, prfcount, tempechocol, 3); } qDebug() << u8"6.保存成像网格结果"; qDebug() << "---------------------------------------------------------------------------------"; } bool OverlapCheck(QString& ImageLLPath, QString& ImageDEMPath) { // 检查DEM是否是WGS84坐标系 //long demEPSG = GetEPSGFromRasterFile(ImageDEMPath); //if (demEPSG != 4326) { // qDebug() << u8"DEM坐标系不是WGS84坐标系,ESPG:"<< demEPSG; // return false; //} gdalImage demimg(ImageDEMPath); gdalImage imgll(ImageLLPath); long imgheight = imgll.height; long imgwidth = imgll.width; Eigen::MatrixXd imglonArr = imgll.getData(0, 0, imgheight, imgwidth, 1); Eigen::MatrixXd imglatArr = imgll.getData(0, 0, imgheight, imgwidth, 2); // 打印范围 qDebug() << u8"影像范围:"; qDebug() << u8"最小经度:\t" << imglonArr.minCoeff(); qDebug() << u8"最大经度:\t" << imglonArr.maxCoeff(); qDebug() << u8"最小纬度:\t" << imglatArr.minCoeff(); qDebug() << u8"最大纬度:\t" << imglatArr.maxCoeff(); qDebug() << u8"DEM范围:"; RasterExtend demextend = demimg.getExtend(); qDebug() << u8"最小经度:\t" << demextend.min_x; qDebug() << u8"最大经度:\t" << demextend.max_x; qDebug() << u8"最小纬度:\t" << demextend.min_y; qDebug() << u8"最大纬度:\t" << demextend.max_y; qDebug() << u8"影像大小:\t" << demimg.height << " * " << demimg.width; for (long i = 0; i < imgheight; i++) { for (long j = 0; j < imgwidth; j++) { double lon = imglonArr(i, j); // X double lat = imglatArr(i, j); // Y Landpoint point = demimg.getRow_Col(lon, lat); imglonArr(i, j) = point.lon; imglatArr(i, j) = point.lat; } } double minX = imglonArr.minCoeff(); double maxX = imglonArr.maxCoeff(); double minY = imglatArr.minCoeff(); double maxY = imglatArr.maxCoeff(); //打印范围 qDebug() << u8"dem 的范围:"; qDebug() << u8"minX:"<demimg.width - 1 || minY<1 || maxY>demimg.height - 1) { return false; } else { return true; } } bool GPSPointsNumberEqualCheck(QString& ImageLLPath, QString& InEchoGPSDataPath) { gdalImage antimg(InEchoGPSDataPath); gdalImage imgll(ImageLLPath); return antimg.height == imgll.height; } void InterploateAtiByRefDEM(QString& ImageLLPath, QString& ImageDEMPath, QString& outImageLLAPath, QString& InEchoGPSDataPath) { gdalImage demimg(ImageDEMPath); gdalImage imgll(ImageLLPath); gdalImage outimgll = CreategdalImageDouble(outImageLLAPath, imgll.height, imgll.width, 4, true, true); // 经度、纬度、高程、斜距 long imgheight = imgll.height; long imgwidth = imgll.width; Eigen::MatrixXd imglonArr = imgll.getData(0, 0, imgheight, imgwidth, 1); Eigen::MatrixXd imglatArr = imgll.getData(0, 0, imgheight, imgwidth, 2); Eigen::MatrixXd demArr = demimg.getData(0, 0, demimg.height, demimg.width, 1); Eigen::MatrixXd imgatiArr = Eigen::MatrixXd::Zero(imgheight, imgwidth); Eigen::MatrixXd imgRArr = Eigen::MatrixXd::Zero(imgheight, imgwidth); outimgll.saveImage(imglonArr, 0, 0, 1); outimgll.saveImage(imglatArr, 0, 0, 2); double minX = imglonArr.minCoeff(); double maxX = imglonArr.maxCoeff(); double minY = imglatArr.minCoeff(); double maxY = imglatArr.maxCoeff(); //打印范围 qDebug() << u8"dem 的范围:"; qDebug() << u8"minX:" << minX << "\t" << demimg.width; qDebug() << u8"maxX:" << maxX << "\t" << demimg.width; qDebug() << u8"minY:" << minY << "\t" << demimg.height; qDebug() << u8"maxY:" << maxY << "\t" << demimg.height; qDebug() << u8"图像行列:\t" << demimg.height << " , " << demimg.width; for (long i = 0; i < imgheight; i++) { //printf("\rprocess:%f precent\t\t\t",i*100.0/imgheight); for (long j = 0; j < imgwidth; j++) { double lon = imglonArr(i, j); double lat = imglatArr(i, j); Landpoint point = demimg.getRow_Col(lon, lat); if (point.lon<1 || point.lon>demimg.width - 2 || point.lat < 1 || point.lat - 2) { continue; } else {} Landpoint p0, p11, p21, p12, p22; p0.lon = point.lon; p0.lat = point.lat; p11.lon = floor(p0.lon); p11.lat = floor(p0.lat); p11.ati = demArr(long(p11.lat), long(p11.lon)); p12.lon = ceil(p0.lon); p12.lat = floor(p0.lat); p12.ati = demArr(long(p12.lat), long(p12.lon)); p21.lon = floor(p0.lon); p21.lat = ceil(p0.lat); p21.ati = demArr(long(p21.lat), long(p21.lon)); p22.lon = ceil(p0.lon); p22.lat = ceil(p0.lat); p22.ati = demArr(long(p22.lat), long(p22.lon)); p0.lon = p0.lon - p11.lon; p0.lat = p0.lat - p11.lat; p12.lon = p12.lon - p11.lon; p12.lat = p12.lat - p11.lat; p21.lon = p21.lon - p11.lon; p21.lat = p21.lat - p11.lat; p22.lon = p22.lon - p11.lon; p22.lat = p22.lat - p11.lat; p11.lon = p11.lon - p11.lon; p11.lat = p11.lat - p11.lat; p0.ati=Bilinear_interpolation(p0, p11, p21, p12, p22); imgatiArr(i, j) = p0.ati; } } outimgll.saveImage(imgatiArr, 0, 0, 3); qDebug() << u8"计算每个点的斜距值"; gdalImage antimg(InEchoGPSDataPath); qDebug() << u8"1. 回波GPS坐标点文件参数:\t"; qDebug() << u8"文件路径:\t" << InEchoGPSDataPath; qDebug() << u8"GPS 点数:\t" << antimg.height; qDebug() << u8"文件列数:\t" << antimg.width; long prfcount = antimg.height; std::shared_ptr Pxs((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr Pys((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr Pzs((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr AntDirectX((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr AntDirectY((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr AntDirectZ((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); { long colnum = 19; std::shared_ptr antpos = readDataArr(antimg, 0, 0, prfcount, colnum, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD); double time = 0; double Px = 0; double Py = 0; double Pz = 0; for (long i = 0; i < prfcount; i++) { Pxs.get()[i] = antpos.get()[i * 19 + 1]; // 卫星坐标 Pys.get()[i] = antpos.get()[i * 19 + 2]; Pzs.get()[i] = antpos.get()[i * 19 + 3]; AntDirectX.get()[i] = antpos.get()[i * 19 + 13];// zero doppler AntDirectY.get()[i] = antpos.get()[i * 19 + 14]; AntDirectZ.get()[i] = antpos.get()[i * 19 + 15]; double NormAnt = std::sqrt(AntDirectX.get()[i] * AntDirectX.get()[i] + AntDirectY.get()[i] * AntDirectY.get()[i] + AntDirectZ.get()[i] * AntDirectZ.get()[i]); AntDirectX.get()[i] = AntDirectX.get()[i] / NormAnt; AntDirectY.get()[i] = AntDirectY.get()[i] / NormAnt; AntDirectZ.get()[i] = AntDirectZ.get()[i] / NormAnt;// 归一化 } antpos.reset(); } #pragma omp parallel for for (long prfid = 0; prfid < prfcount; prfid++) { double Px = Pxs.get()[prfid]; double Py = Pys.get()[prfid]; double Pz = Pzs.get()[prfid]; double R = 0; Landpoint LLA = {}; Point3 XYZ = {}; for (long j = 0; j < imgwidth; j++) { LLA.lon = imglonArr(prfid, j); LLA.lat = imglatArr(prfid, j); LLA.ati = imgatiArr(prfid, j); LLA2XYZ(LLA, XYZ); R = sqrt(pow(Px - XYZ.x, 2) + pow(Py - XYZ.y, 2) + pow(Pz - XYZ.z, 2)); imgRArr(prfid, j) = R; } } outimgll.saveImage(imgRArr, 0, 0, 4); qDebug() << u8"插值完成"; } void InterploateClipAtiByRefDEM(QString ImageLLPath, QString& ImageDEMPath, QString& outImageLLAPath, QString& InEchoGPSDataPath) { gdalImage demimg(ImageDEMPath); gdalImage imgll(ImageLLPath); // 裁剪 long imgheight = imgll.height; long imgwidth = imgll.width; long minRow = -1; long maxRow = imgheight; long minCol = -1; long maxCol = imgwidth; Eigen::MatrixXd imglonArr = imgll.getData(0, 0, imgheight, imgwidth, 1); Eigen::MatrixXd imglatArr = imgll.getData(0, 0, imgheight, imgwidth, 2); #pragma omp parallel for for (long i = 0; i < imgheight; i++) { for (long j = 0; j < imgwidth; j++) { double lon = imglonArr(i, j); double lat = imglatArr(i, j); Landpoint point = demimg.getRow_Col(lon, lat); imglonArr(i, j) = point.lon; imglatArr(i, j) = point.lat; } } // 开始逐行扫描 bool minRowFlag=true, maxRowFlag= true, minColFlag = true, maxColFlag = true; for (long i = 0; i < imgheight; i++) { for (long j = 0; j < imgwidth; j++) { if (imglonArr(i, j) > 0 && minRowFlag) { minRowFlag = false; minRow = i; break; } if (imglonArr(i, j) < imgheight) { maxRow = i; } } } for (long j = 0; j < imgwidth; j++) { for (long i = 0; i < imgheight; i++) { if (imglatArr(i, j) > 0 && minColFlag) { minColFlag = false; minCol = j; break; } if (imglatArr(i, j) < imgheight) { maxCol = j; } } } long RowCount = maxRow - minRow; long ColCount = maxCol - minCol; gdalImage outimgll = CreategdalImageDouble(outImageLLAPath, RowCount, ColCount, 4, true, true); // 经度、纬度、高程、斜距 imgheight = outimgll.height; imgwidth = outimgll.width; imglonArr = imgll.getData(minRow, minCol, RowCount, ColCount, 1); imglatArr = imgll.getData(minRow, minCol, RowCount, ColCount, 2); Eigen::MatrixXd demArr = demimg.getData(0, 0, demimg.height, demimg.width, 1); Eigen::MatrixXd imgatiArr = Eigen::MatrixXd::Zero(imgheight, imgwidth); Eigen::MatrixXd imgRArr = Eigen::MatrixXd::Zero(imgheight, imgwidth); outimgll.saveImage(imglonArr, 0, 0, 1); outimgll.saveImage(imglatArr, 0, 0, 2); double minX = imglonArr.minCoeff(); double maxX = imglonArr.maxCoeff(); double minY = imglatArr.minCoeff(); double maxY = imglatArr.maxCoeff(); //打印范围 qDebug() << u8"dem 的范围:"; qDebug() << u8"minX:" << minX << "\t" << demimg.width; qDebug() << u8"maxX:" << maxX << "\t" << demimg.width; qDebug() << u8"minY:" << minY << "\t" << demimg.height; qDebug() << u8"maxY:" << maxY << "\t" << demimg.height; qDebug() << u8"图像行列:\t" << demimg.height << " , " << demimg.width; for (long i = 0; i < imgheight; i++) { //printf("\rprocess:%f precent\t\t\t",i*100.0/imgheight); for (long j = 0; j < imgwidth; j++) { double lon = imglonArr(i, j); double lat = imglatArr(i, j); Landpoint point = demimg.getRow_Col(lon, lat); if (point.lon<1 || point.lon>demimg.width - 2 || point.lat < 1 || point.lat - 2) { continue; } else {} Landpoint p0, p11, p21, p12, p22; p0.lon = point.lon; p0.lat = point.lat; p11.lon = floor(p0.lon); p11.lat = floor(p0.lat); p11.ati = demArr(long(p11.lat), long(p11.lon)); p12.lon = ceil(p0.lon); p12.lat = floor(p0.lat); p12.ati = demArr(long(p12.lat), long(p12.lon)); p21.lon = floor(p0.lon); p21.lat = ceil(p0.lat); p21.ati = demArr(long(p21.lat), long(p21.lon)); p22.lon = ceil(p0.lon); p22.lat = ceil(p0.lat); p22.ati = demArr(long(p22.lat), long(p22.lon)); p0.lon = p0.lon - p11.lon; p0.lat = p0.lat - p11.lat; p12.lon = p12.lon - p11.lon; p12.lat = p12.lat - p11.lat; p21.lon = p21.lon - p11.lon; p21.lat = p21.lat - p11.lat; p22.lon = p22.lon - p11.lon; p22.lat = p22.lat - p11.lat; p11.lon = p11.lon - p11.lon; p11.lat = p11.lat - p11.lat; p0.ati = Bilinear_interpolation(p0, p11, p21, p12, p22); imgatiArr(i, j) = p0.ati; } } outimgll.saveImage(imgatiArr, 0, 0, 3); qDebug() << u8"计算每个点的斜距值"; gdalImage antimg(InEchoGPSDataPath); qDebug() << u8"1. 回波GPS坐标点文件参数:\t"; qDebug() << u8"文件路径:\t" << InEchoGPSDataPath; qDebug() << u8"GPS 点数:\t" << antimg.height; qDebug() << u8"文件列数:\t" << antimg.width; long prfcount = antimg.height; std::shared_ptr Pxs((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr Pys((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr Pzs((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr AntDirectX((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr AntDirectY((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); std::shared_ptr AntDirectZ((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost); { long colnum = 19; std::shared_ptr antpos = readDataArr(antimg, 0, 0, prfcount, colnum, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD); double time = 0; double Px = 0; double Py = 0; double Pz = 0; for (long i = 0; i < prfcount; i++) { Pxs.get()[i] = antpos.get()[i * 19 + 1]; // 卫星坐标 Pys.get()[i] = antpos.get()[i * 19 + 2]; Pzs.get()[i] = antpos.get()[i * 19 + 3]; AntDirectX.get()[i] = antpos.get()[i * 19 + 13];// zero doppler AntDirectY.get()[i] = antpos.get()[i * 19 + 14]; AntDirectZ.get()[i] = antpos.get()[i * 19 + 15]; double NormAnt = std::sqrt(AntDirectX.get()[i] * AntDirectX.get()[i] + AntDirectY.get()[i] * AntDirectY.get()[i] + AntDirectZ.get()[i] * AntDirectZ.get()[i]); AntDirectX.get()[i] = AntDirectX.get()[i] / NormAnt; AntDirectY.get()[i] = AntDirectY.get()[i] / NormAnt; AntDirectZ.get()[i] = AntDirectZ.get()[i] / NormAnt;// 归一化 } antpos.reset(); } #pragma omp parallel for for (long prfid = minRow; prfid < maxRow; prfid++) { double Px = Pxs.get()[prfid]; double Py = Pys.get()[prfid]; double Pz = Pzs.get()[prfid]; double R = 0; Landpoint LLA = {}; Point3 XYZ = {}; for (long j = 0; j < imgwidth; j++) { LLA.lon = imglonArr(prfid-minRow, j); LLA.lat = imglatArr(prfid - minRow, j); LLA.ati = imgatiArr(prfid - minRow, j); LLA2XYZ(LLA, XYZ); R = sqrt(pow(Px - XYZ.x, 2) + pow(Py - XYZ.y, 2) + pow(Pz - XYZ.z, 2)); imgRArr(prfid - minRow, j) = R; } } outimgll.saveImage(imgRArr, 0, 0, 4); qDebug() << u8"插值完成"; } int ReflectTable_WGS2Range(QString dem_rc_path,QString outOriSimTiffPath,QString ori_sim_count_tiffPath,long OriHeight,long OriWidth) { gdalImage sim_rc(dem_rc_path); gdalImage sim_sar_img = CreategdalImage(outOriSimTiffPath, OriHeight, OriWidth, 2, sim_rc.gt, sim_rc.projection, false);// 注意这里保留仿真结果 for (int max_rows_ids = 0; max_rows_ids < OriHeight; max_rows_ids = max_rows_ids + 1000) { Eigen::MatrixXd sim_sar = sim_sar_img.getData(max_rows_ids, 0, 1000, OriWidth, 1); Eigen::MatrixXd sim_sarc = sim_sar_img.getData(max_rows_ids, 0, 1000, OriWidth, 2); sim_sar = sim_sar.array() * 0 - 9999; sim_sarc = sim_sar.array() * 0 - 9999; sim_sar_img.saveImage(sim_sar, max_rows_ids, 0, 1); sim_sar_img.saveImage(sim_sarc, max_rows_ids, 0, 2); } sim_sar_img.setNoDataValue(-9999, 1); sim_sar_img.setNoDataValue(-9999, 2); int conver_lines = 5000; int line_invert = 4000;// 计算重叠率 int line_offset = 60; // 逐区域迭代计算 omp_lock_t lock; omp_init_lock(&lock); // 初始化互斥锁 int allCount = 0; for (int max_rows_ids = 0; max_rows_ids < sim_rc.height; max_rows_ids = max_rows_ids + line_invert) { Eigen::MatrixXd dem_r = sim_rc.getData(max_rows_ids, 0, conver_lines, sim_rc.width, 1); Eigen::MatrixXd dem_c = sim_rc.getData(max_rows_ids, 0, conver_lines, sim_rc.width, 2); int dem_rows_num = dem_r.rows(); int dem_cols_num = dem_r.cols(); // 更新插值经纬度 //Eigen::MatrixXd dem_lon = dem_r; //Eigen::MatrixXd dem_lat = dem_c; // 构建索引 更新经纬度并更新链 int temp_r, temp_c; int min_row = dem_r.minCoeff() + 1; int max_row = dem_r.maxCoeff() + 1; if (max_row < 0) { continue; } int len_rows = max_row - min_row; min_row = min_row < 0 ? 0 : min_row; Eigen::MatrixXd sar_r = sim_sar_img.getData(min_row, 0, len_rows, OriWidth, 1); Eigen::MatrixXd sar_c = sim_sar_img.getData(min_row, 0, len_rows, OriWidth, 2); len_rows = sar_r.rows(); #pragma omp parallel for num_threads(8) // NEW ADD for (int i = 0; i < dem_rows_num - 1; i++) { for (int j = 0; j < dem_cols_num - 1; j++) { Point3 p, p1, p2, p3, p4; Landpoint lp1, lp2, lp3, lp4; lp1 = sim_rc.getLandPoint(i + max_rows_ids, j, 0); lp2 = sim_rc.getLandPoint(i + max_rows_ids, j + 1, 0); lp3 = sim_rc.getLandPoint(i + 1 + max_rows_ids, j + 1, 0); lp4 = sim_rc.getLandPoint(i + 1 + max_rows_ids, j, 0); p1 = { dem_r(i,j),dem_c(i,j) }; p2 = { dem_r(i,j + 1),dem_c(i,j + 1) }; p3 = { dem_r(i + 1,j + 1),dem_c(i + 1,j + 1) }; p4 = { dem_r(i + 1,j),dem_c(i + 1,j) }; //if (angle(i, j) >= 90 && angle(i, j + 1) >= 90 && angle(i + 1, j) >= 90 && angle(i + 1, j + 1) >= 90) { // continue; //} double temp_min_r = dem_r.block(i, j, 2, 2).minCoeff(); double temp_max_r = dem_r.block(i, j, 2, 2).maxCoeff(); double temp_min_c = dem_c.block(i, j, 2, 2).minCoeff(); double temp_max_c = dem_c.block(i, j, 2, 2).maxCoeff(); if ((int(temp_min_r) != int(temp_max_r)) && (int(temp_min_c) != int(temp_max_c))) { for (int ii = int(temp_min_r); ii <= temp_max_r + 1; ii++) { for (int jj = int(temp_min_c); jj < temp_max_c + 1; jj++) { if (ii < min_row || ii - min_row >= len_rows || jj < 0 || jj >= OriWidth) { continue; } p = { double(ii),double(jj),0 }; //if (PtInRect(p, p1, p2, p3, p4)) { p1.z = lp1.lon; p2.z = lp2.lon; p3.z = lp3.lon; p4.z = lp4.lon; p = invBilinear(p, p1, p2, p3, p4); if (isnan(p.z)) { continue; } if (p.x < 0) { continue; } double mean = (p1.z + p2.z + p3.z + p4.z) / 4; if (p.z > p1.z && p.z > p2.z && p.z > p3.z && p.z > p4.z) { p.z = mean; } if (p.z < p1.z && p.z < p2.z && p.z < p3.z && p.z < p4.z) { p.z = mean; } sar_r(ii - min_row, jj) = p.z; p1.z = lp1.lat; p2.z = lp2.lat; p3.z = lp3.lat; p4.z = lp4.lat; p = invBilinear(p, p1, p2, p3, p4); if (isnan(p.z)) { continue; } if (p.x < 0) { continue; } mean = (p1.z + p2.z + p3.z + p4.z) / 4; if (p.z > p1.z && p.z > p2.z && p.z > p3.z && p.z > p4.z) { p.z = mean; } if (p.z < p1.z && p.z < p2.z && p.z < p3.z && p.z < p4.z) { p.z = mean; } sar_c(ii - min_row, jj) = p.z; //} } } } } } omp_set_lock(&lock); //获得互斥器 sim_sar_img.saveImage(sar_r, min_row, 0, 1); sim_sar_img.saveImage(sar_c, min_row, 0, 2); allCount = allCount + conver_lines; qDebug() << "rows:\t" << allCount << "/" << sim_rc.height << "\t computing.....\t" ; omp_unset_lock(&lock); //释放互斥器 } return 0; } int ResampleEChoDataFromGeoEcho(QString L2echodataPath, QString RangeLooktablePath, QString L1AEchoDataPath) { gdalImageComplex echodata(L2echodataPath); gdalImage looktable(RangeLooktablePath); gdalImageComplex l1adata = CreategdalImageComplexNoProj(L1AEchoDataPath, looktable.height, looktable.width, 1, true); Eigen::MatrixXcd echoArr = echodata.getDataComplex(0, 0, echodata.height, echodata.width, 1); long blockHeight = Memory1GB / looktable.width / 8 * 2; for (long startRow = 0; startRow < looktable.height; startRow = startRow + blockHeight) { printf("\rGEC: process:%f precent\t\t\t", startRow * 100.0 / looktable.height); blockHeight = blockHeight + startRow < looktable.height ? blockHeight : looktable.height - startRow; Eigen::MatrixXd imglonArr = looktable.getData(startRow, 0, blockHeight, looktable.width, 1); Eigen::MatrixXd imglatArr = looktable.getData(startRow, 0, blockHeight, looktable.width, 2); Eigen::MatrixXcd l1aArr = l1adata.getDataComplex(0, 0, blockHeight, l1adata.width, 1); l1aArr = l1aArr.array() * 0; long imgheight = blockHeight; long imgwidth = looktable.width; for (long i = 0; i < imgheight; i++) { for (long j = 0; j < imgwidth; j++) { double lon = imglonArr(i, j); double lat = imglatArr(i, j); Landpoint point = echodata.getRow_Col(lon, lat); if (point.lon<1 || point.lon>echodata.width - 2 || point.lat < 1 || point.lat >echodata.height - 2) { continue; } else {} // 实部插值 { Landpoint p0, p11, p21, p12, p22; p0.lon = point.lon; p0.lat = point.lat; p11.lon = floor(p0.lon); p11.lat = floor(p0.lat); p11.ati = echoArr(long(p11.lat), long(p11.lon)).real(); p12.lon = ceil(p0.lon); p12.lat = floor(p0.lat); p12.ati = echoArr(long(p12.lat), long(p12.lon)).real(); p21.lon = floor(p0.lon); p21.lat = ceil(p0.lat); p21.ati = echoArr(long(p21.lat), long(p21.lon)).real(); p22.lon = ceil(p0.lon); p22.lat = ceil(p0.lat); p22.ati = echoArr(long(p22.lat), long(p22.lon)).real(); p0.lon = p0.lon - p11.lon; p0.lat = p0.lat - p11.lat; p12.lon = p12.lon - p11.lon; p12.lat = p12.lat - p11.lat; p21.lon = p21.lon - p11.lon; p21.lat = p21.lat - p11.lat; p22.lon = p22.lon - p11.lon; p22.lat = p22.lat - p11.lat; p11.lon = p11.lon - p11.lon; p11.lat = p11.lat - p11.lat; p0.ati = Bilinear_interpolation(p0, p11, p21, p12, p22); l1aArr(i, j).real(p0.ati); } //虚部插值 { Landpoint p0, p11, p21, p12, p22; p0.lon = point.lon; p0.lat = point.lat; p11.lon = floor(p0.lon); p11.lat = floor(p0.lat); p11.ati = echoArr(long(p11.lat), long(p11.lon)).imag(); p12.lon = ceil(p0.lon); p12.lat = floor(p0.lat); p12.ati = echoArr(long(p12.lat), long(p12.lon)).imag(); p21.lon = floor(p0.lon); p21.lat = ceil(p0.lat); p21.ati = echoArr(long(p21.lat), long(p21.lon)).imag(); p22.lon = ceil(p0.lon); p22.lat = ceil(p0.lat); p22.ati = echoArr(long(p22.lat), long(p22.lon)).imag(); p0.lon = p0.lon - p11.lon; p0.lat = p0.lat - p11.lat; p12.lon = p12.lon - p11.lon; p12.lat = p12.lat - p11.lat; p21.lon = p21.lon - p11.lon; p21.lat = p21.lat - p11.lat; p22.lon = p22.lon - p11.lon; p22.lat = p22.lat - p11.lat; p11.lon = p11.lon - p11.lon; p11.lat = p11.lat - p11.lat; p0.ati = Bilinear_interpolation(p0, p11, p21, p12, p22); l1aArr(i, j).imag(p0.ati); } } } l1adata.saveImage(l1aArr, startRow, 0, 1); } return 0; }