#include #include #include #include #include #include #include #include #include "BaseConstVariable.h" #include "GPUTool.cuh" #ifdef __CUDANVCC___ // 定义参数 __device__ cuComplex cuCexpf(cuComplex x) { float factor = exp(x.x); return make_cuComplex(factor * cos(x.y), factor * sin(x.y)); } __device__ CUDAVector GPU_VectorAB(CUDAVector A, CUDAVector B) { CUDAVector C; C.x = B.x - A.x; C.y = B.y - A.y; C.z = B.z - A.z; return C; } __device__ float GPU_VectorNorm2(CUDAVector A) { return sqrtf(A.x * A.x + A.y * A.y + A.z * A.z); } __device__ float GPU_dotVector(CUDAVector A, CUDAVector B) { return A.x * B.x + A.y * B.y + A.z * B.z; } __device__ float GPU_CosAngle_VectorA_VectorB(CUDAVector A, CUDAVector B) { return GPU_dotVector(A, B) / (GPU_VectorNorm2(A) * GPU_VectorNorm2(B)); } __global__ void CUDA_DistanceAB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* R, long len) { long idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < len) { R[idx] = sqrtf(powf(Ax[idx] - Bx[idx], 2) + powf(Ay[idx] - By[idx], 2) + powf(Az[idx] - Bz[idx], 2)); } } __global__ void CUDA_B_DistanceA(float* Ax, float* Ay, float* Az, float Bx, float By, float Bz, float* R, long len) { long idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < len) { R[idx] = sqrtf(powf(Ax[idx] - Bx, 2) + powf(Ay[idx] - By, 2) + powf(Az[idx] - Bz, 2)); } } __global__ void CUDA_make_VectorA_B(float sX, float sY, float sZ, float* tX, float* tY, float* tZ, float* RstX, float* RstY, float* RstZ, long len) { long idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < len) { RstX[idx] = sX - tX[idx]; // 地面->天 RstY[idx] = sY - tY[idx]; RstZ[idx] = sZ - tZ[idx]; } } __global__ void CUDA_Norm_Vector(float* Vx, float* Vy, float* Vz, float* R, long len) { long idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < len) { R[idx] = sqrtf(powf(Vx[idx], 2) + powf(Vy[idx], 2) + powf(Vz[idx], 2)); } } __global__ void CUDA_cosAngle_VA_AB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* anglecos, long len) { long idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < len) { float tAx = Ax[idx]; float tAy = Ay[idx]; float tAz = Az[idx]; float tBx = Bx[idx]; float tBy = By[idx]; float tBz = Bz[idx]; float AR = sqrtf(powf(tAx, 2) + powf(tAy, 2) + powf(tAz, 2)); float BR = sqrtf(powf(tBx, 2) + powf(tBy, 2) + powf(tBz, 2)); float dotAB = tAx * tBx + tAy * tBy + tAz * tBz; float result = acosf(dotAB / (AR * BR)); anglecos[idx] = result; } } __global__ void CUDA_GridPoint_Linear_Interp1(float* v, float* q, float* qv, long xlen, long qlen) { long idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < qlen) { float qx = q[idx]; // 检索循环 if (qx < 0 || qx > xlen - 1) {} else { long x1 = floor(qx); long x2 = ceil(qx); if (x1 >= 0 && x2 < xlen) { float y1 = v[x1]; float y2 = v[x2]; float y = y1 + (y2 - y1) * (qx - x1) / (x2 - x1); qv[idx] = y; } else { } } } } //错误提示 extern "C" void checkCudaError(cudaError_t err, const char* msg) { if (err != cudaSuccess) { std::cerr << "CUDA error: " << msg << " (" << cudaGetErrorString(err) << ")" << std::endl; exit(EXIT_FAILURE); } } // 主机参数内存声明 extern "C" void* mallocCUDAHost(long memsize) { void* ptr; cudaMallocHost(&ptr, memsize); #ifdef __CUDADEBUG__ cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("mallocCUDAHost CUDA Error: %s\n", cudaGetErrorString(err)); // Possibly: exit(-1) if program cannot continue.... } #endif // __CUDADEBUG__ cudaDeviceSynchronize(); return ptr; } // 主机参数内存释放 extern "C" void FreeCUDAHost(void* ptr) { cudaFreeHost(ptr); #ifdef __CUDADEBUG__ cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("FreeCUDAHost CUDA Error: %s\n", cudaGetErrorString(err)); // Possibly: exit(-1) if program cannot continue.... } #endif // __CUDADEBUG__ cudaDeviceSynchronize(); } // GPU参数内存声明 extern "C" void* mallocCUDADevice(long memsize) { void* ptr; cudaMalloc(&ptr, memsize); #ifdef __CUDADEBUG__ cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("mallocCUDADevice CUDA Error: %s\n", cudaGetErrorString(err)); // Possibly: exit(-1) if program cannot continue.... } #endif // __CUDADEBUG__ cudaDeviceSynchronize(); return ptr; } // GPU参数内存释放 extern "C" void FreeCUDADevice(void* ptr) { cudaFree(ptr); #ifdef __CUDADEBUG__ cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("FreeCUDADevice CUDA Error: %s\n", cudaGetErrorString(err)); // Possibly: exit(-1) if program cannot continue.... } #endif // __CUDADEBUG__ cudaDeviceSynchronize(); } // GPU 内存数据转移 extern "C" void HostToDevice(void* hostptr, void* deviceptr, long memsize) { cudaMemcpy(deviceptr, hostptr, memsize, cudaMemcpyHostToDevice); #ifdef __CUDADEBUG__ cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("HostToDevice CUDA Error: %s\n", cudaGetErrorString(err)); // Possibly: exit(-1) if program cannot continue.... } #endif // __CUDADEBUG__ cudaDeviceSynchronize(); } extern "C" void DeviceToHost(void* hostptr, void* deviceptr, long memsize) { cudaMemcpy(hostptr, deviceptr, memsize, cudaMemcpyDeviceToHost); #ifdef __CUDADEBUG__ cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("DeviceToHost CUDA Error: %s\n", cudaGetErrorString(err)); // Possibly: exit(-1) if program cannot continue.... } #endif // __CUDADEBUG__ cudaDeviceSynchronize(); } // 基础运算函数 extern "C" void CUDAdistanceAB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* R, long len) { // 设置 CUDA 核函数的网格和块的尺寸 int blockSize = 256; // 每个块的线程数 int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小 // 调用 CUDA 核函数 CUDA_DistanceAB << > > (Ax, Ay, Az, Bx, By, Bz, R, len); #ifdef __CUDADEBUG__ cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("CUDAdistanceAB CUDA Error: %s\n", cudaGetErrorString(err)); // Possibly: exit(-1) if program cannot continue.... } #endif // __CUDADEBUG__ cudaDeviceSynchronize(); } extern "C" void CUDABdistanceAs(float* Ax, float* Ay, float* Az, float Bx, float By, float Bz, float* R, long len) { // 设置 CUDA 核函数的网格和块的尺寸 int blockSize = 256; // 每个块的线程数 int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小 // 调用 CUDA 核函数 CUDA_B_DistanceA << > > (Ax, Ay, Az, Bx, By, Bz, R, len); #ifdef __CUDADEBUG__ cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("CUDABdistanceAs CUDA Error: %s\n", cudaGetErrorString(err)); // Possibly: exit(-1) if program cannot continue.... } #endif // __CUDADEBUG__ cudaDeviceSynchronize(); } extern "C" void CUDAmake_VectorA_B(float sX, float sY, float sZ, float* tX, float* tY, float* tZ, float* RstX, float* RstY, float* RstZ, long len) { // 设置 CUDA 核函数的网格和块的尺寸 int blockSize = 256; // 每个块的线程数 int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小 // 调用 CUDA 核函数 CUDA_make_VectorA_B << > > (sX, sY, sZ, tX, tY, tZ, RstX, RstY, RstZ, len); #ifdef __CUDADEBUG__ cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("CUDAmake_VectorA_B CUDA Error: %s\n", cudaGetErrorString(err)); // Possibly: exit(-1) if program cannot continue.... } #endif // __CUDADEBUG__ cudaDeviceSynchronize(); } extern "C" void CUDANorm_Vector(float* Vx, float* Vy, float* Vz, float* R, long len) { // 设置 CUDA 核函数的网格和块的尺寸 int blockSize = 256; // 每个块的线程数 int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小 // 调用 CUDA 核函数 CUDA_Norm_Vector << > > (Vx, Vy, Vz, R, len); #ifdef __CUDADEBUG__ cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("CUDANorm_Vector CUDA Error: %s\n", cudaGetErrorString(err)); // Possibly: exit(-1) if program cannot continue.... } #endif // __CUDADEBUG__ cudaDeviceSynchronize(); } extern "C" void CUDAcosAngle_VA_AB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* anglecos, long len) { int blockSize = 256; // 每个块的线程数 int numBlocks = (len + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小 // 调用 CUDA 核函数 CUDA_cosAngle_VA_AB << > > (Ax, Ay, Az, Bx, By, Bz, anglecos, len); #ifdef __CUDADEBUG__ cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("CUDAcosAngle_VA_AB CUDA Error: %s\n", cudaGetErrorString(err)); // Possibly: exit(-1) if program cannot continue.... } #endif // __CUDADEBUG__ cudaDeviceSynchronize(); } extern "C" void CUDAGridPointLinearInterp1(float* v, float* q, float* qv, long xlen, long qlen) { int blockSize = 256; // 每个块的线程数 int numBlocks = (qlen + blockSize - 1) / blockSize; // 根据 pixelcount 计算网格大小 // 调用 CUDA 核函数 CUDA_GridPoint_Linear_Interp1 << > > ( v, q,qv, xlen, qlen); #ifdef __CUDADEBUG__ cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("CUDALinearInterp1 CUDA Error: %s\n", cudaGetErrorString(err)); // Possibly: exit(-1) if program cannot continue.... } #endif // __CUDADEBUG__ cudaDeviceSynchronize(); } #endif