Release-dev
chenzenghui 2025-04-08 00:14:32 +08:00
commit a0d3e68035
5 changed files with 235 additions and 293 deletions

View File

@ -1153,7 +1153,7 @@ int ResampleGDAL(const char* pszSrcFile, const char* pszOutFile, double* gt, int
GDALWarpOptions* psWo = GDALCreateWarpOptions();
CPLSetConfigOption("GDAL_NUM_THREADS", "ALL_CPUS"); // 使用所有可用的CPU核心
CPLSetConfigOption("GDAL_CACHEMAX", "16000"); // 设置缓存大小为500MB
CPLSetConfigOption("GDAL_CACHEMAX", "4000"); // 设置缓存大小为500MB
// psWo->papszWarpOptions = CSLDuplicate(NULL);
psWo->eWorkingDataType = dataType;
psWo->eResampleAlg = eResample;

View File

@ -110,7 +110,7 @@ __global__ void processPulseKernel(
im_final[idx].x += phCorr.x;
im_final[idx].y += phCorr.y;
//printf("r_start=%e;dr=%e;nR=%d\n", r_start, dr, nR);
if (abs(phCorr.x) > 1e-100 || abs(phCorr.y > 1e-100)) {
//if (abs(phCorr.x) > 1e-100 || abs(phCorr.y > 1e-100)) {
//printf(
// "[DEBUG] prfid=%-4ld | idx=%-8lld\n"
// " Ant: X=%-18.10e Y=%-18.10e Z=%-18.10e\n"
@ -133,7 +133,7 @@ __global__ void processPulseKernel(
// phCorr.x, phCorr.y,
// im_final[idx].x, im_final[idx].y
//);
}
//}
}
void bpBasic0CUDA(GPUDATA& data, int flag,double* h_R) {

View File

@ -519,12 +519,12 @@ __global__ void Kernel_Computer_R_amp_NoAntPattern(
RstY = RstY / RstR;
RstZ = RstZ / RstR;
double slopeX = gp.TsX;
double slopeY = gp.TsY;
double slopeZ = gp.TsZ;
float slopeX = gp.TsX;
float slopeY = gp.TsY;
float slopeZ = gp.TsZ;
double slopR = sqrtf(slopeX * slopeX + slopeY * slopeY + slopeZ * slopeZ); //
if (abs(slopR - 0) > 1e-3) {
float slopR = sqrtf(slopeX * slopeX + slopeY * slopeY + slopeZ * slopeZ); //
if (slopR > 1e-3) {
float localangle = acosf((RstX * slopeX + RstY * slopeY + RstZ * slopeZ) / ( slopR));
@ -553,10 +553,11 @@ __global__ void Kernel_Computer_R_amp_NoAntPattern(
ampGain=2 * maxGain * (1 - (powf(diectAngle,2) / 6)
+ (powf(diectAngle, 4) / 120)
- (powf(diectAngle, 6) / 5040)); //dB
ampGain = powf(10.0, ampGain / 10.0);
ampGain = ampGain / (PI4POW2 * powf(RstR, 4)); // 反射强度
double sigma = GPU_getSigma0dB(sigma0Params, localangle);
float sigma = GPU_getSigma0dB(sigma0Params, localangle);
sigma = powf(10.0, sigma / 10.0);
double temp_amp = double(ampGain * Pt * sigma);
@ -573,76 +574,6 @@ __global__ void Kernel_Computer_R_amp_NoAntPattern(
}
}
__global__ void CUDA_Kernel_Computer_echo_NoAntPattern(
double* d_temp_R, double* d_temp_amps, long posNum,
double f0, double dfreq,
long FreqPoints, // 当前频率的分块
long maxfreqnum, // 最大脉冲值
cuComplex* echodata,
long temp_PRF_Count
) {
__shared__ float s_R[SHAREMEMORY_FLOAT_HALF]; // 注意一个完整的block_size 共享相同内存
__shared__ float s_amp[SHAREMEMORY_FLOAT_HALF];
long long tid = threadIdx.x;
long long bid = blockIdx.x;
long long idx = bid * blockDim.x + tid;
long long prfId = idx / FreqPoints; // 脉冲ID
long long fId = idx % FreqPoints;//频率ID
long long psid = 0;
long long pixelId = 0;
for (long ii = 0; ii < SHAREMEMORY_FLOAT_HALF_STEP; ii++) { // SHAREMEMORY_FLOAT_HALF_STEP * BLOCK_SIZE=SHAREMEMORY_FLOAT_HALF
psid = tid * SHAREMEMORY_FLOAT_HALF_STEP + ii;
pixelId = prfId * posNum + psid; //
if (psid < posNum) {
s_R[psid] = d_temp_R[pixelId];
s_amp[psid] = d_temp_amps[pixelId];
}
else {
s_R[psid] = 0;
s_amp[psid] = 0;
}
}
__syncthreads(); // 确定所有待处理数据都已经进入程序中
if (fId < maxfreqnum && prfId < temp_PRF_Count) {
long echo_ID = prfId * maxfreqnum + fId; // 计算对应的回波位置
float factorjTemp = RFPCPIDIVLIGHT * (f0 + fId * dfreq);
cuComplex echo = make_cuComplex(0, 0);
float temp_phi = 0;
float temp_amp = 0;
for (long dataid = 0; dataid < SHAREMEMORY_FLOAT_HALF; dataid++) {
temp_phi = s_R[dataid] * factorjTemp;
temp_amp = s_amp[dataid];
echo.x += (temp_amp * cosf(temp_phi));
echo.y += (temp_amp * sinf(temp_phi));
//if (dataid > 5000) {
// printf("echo_ID=%d; dataid=%d;ehodata=(%f,%f);R=%f;amp=%f;\n", echo_ID, dataid, temp_real, temp_imag, s_R[0], s_amp[0]);
//}
//if (isnan(temp_phi) || isnan(temp_amp) || isnan(echo.x) || isnan(echo.y)
// || isinf(temp_phi) || isinf(temp_amp) || isinf(echo.x) || isinf(echo.y)
// ) {
// printf("[amp,phi,real,imag]=[%f,%f,%f,%f];\n", temp_amp, temp_phi, echo.x, echo.y);
//}
}
echodata[echo_ID] = cuCaddf(echodata[echo_ID], echo);
}
}
__global__ void CUDA_Kernel_Computer_echo_NoAntPattern_Optimized(
double* d_temp_R, double* d_temp_amps, long posNum,
double f0, double dfreq,
@ -652,15 +583,15 @@ __global__ void CUDA_Kernel_Computer_echo_NoAntPattern_Optimized(
long temp_PRF_Count
) {
// 使用动态共享内存,根据线程块大小调整
extern __shared__ float s_data[];
float* s_R = s_data;
float* s_amp = s_data + blockDim.x;
extern __shared__ double s_data[];
double* s_R = s_data;
double* s_amp = s_data + blockDim.x;
const int tid = threadIdx.x;
const int prfId = blockIdx.x;
const int fId = tid; // 每个线程处理一个频率点
float factorjTemp = RFPCPIDIVLIGHT * (f0 + fId * dfreq);
double factorjTemp = RFPCPIDIVLIGHT * (f0 + fId * dfreq);
cuComplex echo = make_cuComplex(0.0f, 0.0f);
// 分块加载数据并计算
@ -670,8 +601,8 @@ __global__ void CUDA_Kernel_Computer_echo_NoAntPattern_Optimized(
// 加载当前块到共享内存
if (psid < posNum) {
s_R[tid] = static_cast<float>(d_temp_R[pixelId]);
s_amp[tid] = static_cast<float>(d_temp_amps[pixelId]);
s_R[tid] = static_cast<double>(d_temp_R[pixelId]);
s_amp[tid] = static_cast<double>(d_temp_amps[pixelId]);
}
else {
s_R[tid] = 0.0f;
@ -681,7 +612,7 @@ __global__ void CUDA_Kernel_Computer_echo_NoAntPattern_Optimized(
// 计算当前块的贡献
for (int dataid = 0; dataid < blockDim.x; ++dataid) {
float temp_phi = s_R[dataid] * factorjTemp;
float temp_phi =fmod( s_R[dataid] * factorjTemp,2*PI);
float temp_amp = s_amp[dataid];
float sin_phi, cos_phi;
sincosf(temp_phi, &sin_phi, &cos_phi);
@ -743,7 +674,7 @@ extern "C" void ProcessRFPCTask(RFPCTask& task, long devid)
dim3 blocks(task.prfNum);
dim3 threads(BLOCK_SIZE);
size_t shared_mem_size = 2 * BLOCK_SIZE * sizeof(float);
size_t shared_mem_size = 2 * BLOCK_SIZE * sizeof(double);
CUDA_Kernel_Computer_echo_NoAntPattern_Optimized << <blocks, threads, shared_mem_size >> > (
d_R, d_amps, SHAREMEMORY_FLOAT_HALF,
@ -761,11 +692,11 @@ extern "C" void ProcessRFPCTask(RFPCTask& task, long devid)
// task.d_echoData,
// task.prfNum
// );
//PrintLasterError("CUDA_Kernel_Computer_echo");
PrintLasterError("CUDA_Kernel_Computer_echo");
cudaDeviceSynchronize();
if ((sTi * 100.0 / task.targetnum) - process >= 1) {
if ((sTi * 100.0 / task.targetnum) - process >= 10) {
process = sTi * 100.0 / task.targetnum;
PRINT("TargetID [%f]: %d / %d finished %d\n", sTi * 100.0 / task.targetnum, sTi, task.targetnum,devid);
PRINT("device ID : %d , TargetID [%f]: %d / %d finished %d\n",devid, sTi * 100.0 / task.targetnum, sTi, task.targetnum,devid);
}
}

View File

@ -91,7 +91,7 @@ extern "C" struct RFPCTask
cuComplex* d_echoData = nullptr; // »Ø²¨
CUDASigmaParam sigma0_cls;
double maxGain=48;
double GainWeight=20; // 2śČˇśÎ§
double GainWeight=10; // 2śČˇśÎ§
size_t targetnum;

View File

@ -223,12 +223,12 @@ RFPCProcessCls::RFPCProcessCls()
this->PlusePoint = 0;
this->TaskSetting = nullptr;
this->EchoSimulationData = nullptr;
this->LandCoverPath = "";
this->OutEchoPath = "";
this->LandCoverPath = "";
this->OutEchoPath = "";
this->LandCoverPath.clear();
this->OutEchoPath.clear();
this->OutEchoPath.clear();
this->SigmaDatabasePtr = std::shared_ptr<SigmaDatabase>(new SigmaDatabase);
}
@ -339,7 +339,7 @@ ErrorCode RFPCProcessCls::InitParams()
this->PlusePoint = freqnum;// ceil((this->TaskSetting->getFarRange() - this->TaskSetting->getNearRange()) / LIGHTSPEED * 2 * this->TaskSetting->getBandWidth());
this->TaskSetting->setFarRange(this->TaskSetting->getNearRange() + (this->PlusePoint-1) * drange);
this->TaskSetting->setFarRange(this->TaskSetting->getNearRange() + (this->PlusePoint - 1) * drange);
//ceil(rangeTimeSample * this->TaskSetting->getFs());
@ -456,7 +456,7 @@ std::shared_ptr<SatelliteOribtNode[]> RFPCProcessCls::getSatelliteOribtNodes(dou
void RFPCProcessMain(long num_thread,
QString TansformPatternFilePath, QString ReceivePatternFilePath,
QString simulationtaskName, QString OutEchoPath,
QString GPSXmlPath, QString TaskXmlPath,QString demTiffPath, QString sloperPath, QString LandCoverPath)
QString GPSXmlPath, QString TaskXmlPath, QString demTiffPath, QString sloperPath, QString LandCoverPath)
{
std::shared_ptr < AbstractSARSatelliteModel> task = ReadSimulationSettingsXML(TaskXmlPath);
@ -666,8 +666,8 @@ ErrorCode RFPCProcessCls::RFPCMainProcess_GPU() {
gdalImage demlandcls(this->LandCoverPath);// 地表覆盖类型
gdalImage demsloperxyz(this->demsloperPath);// 地面坡向
long demRow = demxyz.height;
long demCol = demxyz.width;
long demRow = demxyz.height;
long demCol = demxyz.width;
//处理地表覆盖
@ -676,7 +676,7 @@ ErrorCode RFPCProcessCls::RFPCMainProcess_GPU() {
long startline = 0;
{
long blokline = getBlockRows(2e4, demCol, sizeof(double),demRow);
long blokline = getBlockRows(2e4, demCol, sizeof(double), demRow);
for (startline = 0; startline < demRow; startline = startline + blokline) {
Eigen::MatrixXd clsland = demlandcls.getData(startline, 0, blokline, demlandcls.width, 1);
long clsrows = clsland.rows();
@ -694,9 +694,9 @@ ErrorCode RFPCProcessCls::RFPCMainProcess_GPU() {
}
}
qDebug() << "class id recoding" ;
qDebug() << "class id recoding";
for (long id : clamap.keys()) {
qDebug() << id << " -> " << clamap[id] ;
qDebug() << id << " -> " << clamap[id];
}
}
@ -716,15 +716,15 @@ ErrorCode RFPCProcessCls::RFPCMainProcess_GPU() {
}
// 打印日志
qDebug() << "sigma params:" ;
qDebug() << "classid:\tp1\tp2\tp3\tp4\tp5\tp6" ;
qDebug() << "sigma params:";
qDebug() << "classid:\tp1\tp2\tp3\tp4\tp5\tp6";
for (long ii = 0; ii < clamapid; ii++) {
qDebug() << ii << ":\t" << h_clsSigmaParam[ii].p1;
qDebug() << "\t" << h_clsSigmaParam[ii].p2;
qDebug() << "\t" << h_clsSigmaParam[ii].p3;
qDebug() << "\t" << h_clsSigmaParam[ii].p4;
qDebug() << "\t" << h_clsSigmaParam[ii].p5;
qDebug() << "\t" << h_clsSigmaParam[ii].p6 ;
qDebug() << "\t" << h_clsSigmaParam[ii].p6;
}
qDebug() << "";
}
@ -733,30 +733,30 @@ ErrorCode RFPCProcessCls::RFPCMainProcess_GPU() {
qDebug() << "CUDA class Proces finished!!!";
// 处理地面坐标
long blockline = getBlockRows(TargetMemoryMB, demCol, sizeof(double), demRow);
long blockline = getBlockRows(TargetMemoryMB, demCol, sizeof(double), demRow);
double* h_dem_x = (double*)mallocCUDAHost(sizeof(double) * blockline * demCol);
double* h_dem_y = (double*)mallocCUDAHost(sizeof(double) * blockline * demCol);
double* h_dem_z = (double*)mallocCUDAHost(sizeof(double) * blockline * demCol);
double* h_demsloper_x = (double*)mallocCUDAHost(sizeof(double) * blockline * demCol);
double* h_demsloper_y = (double*)mallocCUDAHost(sizeof(double) * blockline * demCol);
double* h_demsloper_z = (double*)mallocCUDAHost(sizeof(double) * blockline * demCol);
double* h_dem_x = (double*)mallocCUDAHost(sizeof(double) * blockline * demCol);
double* h_dem_y = (double*)mallocCUDAHost(sizeof(double) * blockline * demCol);
double* h_dem_z = (double*)mallocCUDAHost(sizeof(double) * blockline * demCol);
double* h_demsloper_x = (double*)mallocCUDAHost(sizeof(double) * blockline * demCol);
double* h_demsloper_y = (double*)mallocCUDAHost(sizeof(double) * blockline * demCol);
double* h_demsloper_z = (double*)mallocCUDAHost(sizeof(double) * blockline * demCol);
long* h_demcls = (long*)mallocCUDAHost(sizeof(long) * blockline * demCol);
long* h_demcls = (long*)mallocCUDAHost(sizeof(long) * blockline * demCol);
double* d_dem_x = (double*)mallocCUDADevice(sizeof(double) * blockline * demCol);
double* d_dem_y = (double*)mallocCUDADevice(sizeof(double) * blockline * demCol);
double* d_dem_z = (double*)mallocCUDADevice(sizeof(double) * blockline * demCol);
double* d_demsloper_x = (double*)mallocCUDADevice(sizeof(double) * blockline * demCol);
double* d_demsloper_y = (double*)mallocCUDADevice(sizeof(double) * blockline * demCol);
double* d_demsloper_z = (double*)mallocCUDADevice(sizeof(double) * blockline * demCol);
double* d_dem_x = (double*)mallocCUDADevice(sizeof(double) * blockline * demCol);
double* d_dem_y = (double*)mallocCUDADevice(sizeof(double) * blockline * demCol);
double* d_dem_z = (double*)mallocCUDADevice(sizeof(double) * blockline * demCol);
double* d_demsloper_x = (double*)mallocCUDADevice(sizeof(double) * blockline * demCol);
double* d_demsloper_y = (double*)mallocCUDADevice(sizeof(double) * blockline * demCol);
double* d_demsloper_z = (double*)mallocCUDADevice(sizeof(double) * blockline * demCol);
long* d_demcls = (long*) mallocCUDADevice(sizeof(long) * blockline * demCol);
long* d_demcls = (long*)mallocCUDADevice(sizeof(long) * blockline * demCol);
/** 处理回波***************************************************/
long echo_block_rows = getBlockRows(1000, freqnum, sizeof(float)*2, PRFCount);
long echo_block_rows = getBlockRows(1000, freqnum, sizeof(float) * 2, PRFCount);
float* h_echo_block_real = (float*)mallocCUDAHost(sizeof(float) * echo_block_rows * freqnum);
float* h_echo_block_imag = (float*)mallocCUDAHost(sizeof(float) * echo_block_rows * freqnum);
@ -765,7 +765,7 @@ ErrorCode RFPCProcessCls::RFPCMainProcess_GPU() {
float* d_echo_block_imag = (float*)mallocCUDADevice(sizeof(float) * echo_block_rows * freqnum);
float* d_temp_R = (float*)mallocCUDADevice(sizeof(float) * echo_block_rows * SHAREMEMORY_FLOAT_HALF); //2GB 距离
float* d_temp_R = (float*)mallocCUDADevice(sizeof(float) * echo_block_rows * SHAREMEMORY_FLOAT_HALF); //2GB 距离
float* d_temp_amp = (float*)mallocCUDADevice(sizeof(float) * echo_block_rows * SHAREMEMORY_FLOAT_HALF);//2GB 强度
@ -787,12 +787,12 @@ ErrorCode RFPCProcessCls::RFPCMainProcess_GPU() {
for (long ii = 0; ii < PRF_len; ii++) {
for (long jj = 0; jj < freqnum; jj++) {
h_echo_block_real[ii * freqnum + jj]=echo_temp.get()[ii * freqnum + jj].real();
h_echo_block_imag[ii * freqnum + jj]=echo_temp.get()[ii * freqnum + jj].imag();
h_echo_block_real[ii * freqnum + jj] = echo_temp.get()[ii * freqnum + jj].real();
h_echo_block_imag[ii * freqnum + jj] = echo_temp.get()[ii * freqnum + jj].imag();
}
}
HostToDevice(h_echo_block_real, d_echo_block_real, sizeof(float) * PRF_len* freqnum);
HostToDevice(h_echo_block_imag, d_echo_block_imag, sizeof(float) * PRF_len* freqnum);
HostToDevice(h_echo_block_real, d_echo_block_real, sizeof(float) * PRF_len * freqnum);
HostToDevice(h_echo_block_imag, d_echo_block_imag, sizeof(float) * PRF_len * freqnum);
for (startline = 0; startline < demRow; startline = startline + blockline) {
@ -804,7 +804,7 @@ ErrorCode RFPCProcessCls::RFPCMainProcess_GPU() {
Eigen::MatrixXd demsloper_z = demsloperxyz.getData(startline, 0, blockline, demCol, 3);
Eigen::MatrixXd landcover = demlandcls.getData(startline, 0, blockline, demCol, 1);
long temp_dem_row = dem_x.rows();
long temp_dem_row = dem_x.rows();
long temp_dem_col = dem_x.cols();
long temp_dem_count = dem_x.count();
@ -824,26 +824,26 @@ ErrorCode RFPCProcessCls::RFPCMainProcess_GPU() {
}
}
qDebug() << "Start PRF: " << sprfid << "\t-\t" << sprfid + PRF_len << "\t:copy target data ("<< startline<<" - "<< startline + blockline << ") host -> GPU";
HostToDevice(h_dem_x, d_dem_x , sizeof(double) * blockline * demCol);
HostToDevice(h_dem_y, d_dem_y , sizeof(double) * blockline * demCol);
HostToDevice(h_dem_z, d_dem_z , sizeof(double) * blockline * demCol);
HostToDevice(h_demsloper_x, d_demsloper_x , sizeof(double) * blockline * demCol);
HostToDevice(h_demsloper_y, d_demsloper_y , sizeof(double) * blockline * demCol);
HostToDevice(h_demsloper_z, d_demsloper_z , sizeof(double) * blockline * demCol);
HostToDevice(h_demcls, d_demcls ,sizeof(long)* blockline* demCol);
qDebug() << "Start PRF: " << sprfid << "\t-\t" << sprfid + PRF_len << "\t:copy target data (" << startline << " - " << startline + blockline << ") host -> GPU";
HostToDevice(h_dem_x, d_dem_x, sizeof(double) * blockline * demCol);
HostToDevice(h_dem_y, d_dem_y, sizeof(double) * blockline * demCol);
HostToDevice(h_dem_z, d_dem_z, sizeof(double) * blockline * demCol);
HostToDevice(h_demsloper_x, d_demsloper_x, sizeof(double) * blockline * demCol);
HostToDevice(h_demsloper_y, d_demsloper_y, sizeof(double) * blockline * demCol);
HostToDevice(h_demsloper_z, d_demsloper_z, sizeof(double) * blockline * demCol);
HostToDevice(h_demcls, d_demcls, sizeof(long) * blockline * demCol);
// 分块处理
qDebug() << "Start PRF: " << sprfid << "\t-\t" << sprfid + PRF_len << "\t:GPU Computer target data (" << startline << "-" << startline + blockline << ")";
CUDA_RFPC_MainProcess(
antptrlist->d_antpx, antptrlist->d_antpy, antptrlist->d_antpz,
antptrlist->d_antXaxisX, antptrlist->d_antXaxisY, antptrlist->d_antXaxisZ, // 天线坐标系的X轴
antptrlist->d_antYaxisX, antptrlist->d_antYaxisY, antptrlist->d_antYaxisZ,// 天线坐标系的Y轴
antptrlist->d_antZaxisX, antptrlist->d_antZaxisY, antptrlist->d_antZaxisZ,// 天线坐标系的Z轴
antptrlist->d_antdirectx, antptrlist->d_antdirecty, antptrlist->d_antdirectz,// 天线的指向
antptrlist->d_antpx, antptrlist->d_antpy, antptrlist->d_antpz,
antptrlist->d_antXaxisX, antptrlist->d_antXaxisY, antptrlist->d_antXaxisZ, // 天线坐标系的X轴
antptrlist->d_antYaxisX, antptrlist->d_antYaxisY, antptrlist->d_antYaxisZ,// 天线坐标系的Y轴
antptrlist->d_antZaxisX, antptrlist->d_antZaxisY, antptrlist->d_antZaxisZ,// 天线坐标系的Z轴
antptrlist->d_antdirectx, antptrlist->d_antdirecty, antptrlist->d_antdirectz,// 天线的指向
PRF_len, freqnum,
f0,dfreq,
f0, dfreq,
Pt,
refphaseRange,
// 天线方向图
@ -861,7 +861,7 @@ ErrorCode RFPCProcessCls::RFPCMainProcess_GPU() {
d_temp_R, d_temp_amp
);
PRINT("dem : %d ~ %d / %d , echo: %d ~ %d / %d \n", startline, startline+ temp_dem_row, demRow, sprfid, sprfid+ PRF_len, PRFCount);
PRINT("dem : %d ~ %d / %d , echo: %d ~ %d / %d \n", startline, startline + temp_dem_row, demRow, sprfid, sprfid + PRF_len, PRFCount);
}
#if (defined __PRFDEBUG__) && (defined __PRFDEBUG_PRFINF__)
@ -929,12 +929,12 @@ ErrorCode RFPCProcessCls::RFPCMainProcess_GPU() {
ErrorCode RFPCProcessCls::RFPCMainProcess_MultiGPU_NoAntPattern()
{
int num_devices=0;
int num_devices = 0;
cudaGetDeviceCount(&num_devices);
PRINT("GPU Count : %d \n", num_devices);
long prfcount = this->EchoSimulationData->getPluseCount();
size_t prfblockcount = (prfcount + num_devices +2- 1) / num_devices;
size_t prfblockcount = (prfcount + num_devices + 2 - 1) / num_devices;
PRINT("PRF COUNT : %d , child PRF COUNT: %d\n", prfcount, prfblockcount);
double prf_time = 0;
double dt = 1 / this->TaskSetting->getPRF();// 获取每次脉冲的时间间隔
@ -961,7 +961,7 @@ ErrorCode RFPCProcessCls::RFPCMainProcess_MultiGPU_NoAntPattern()
ErrorCode RFPCProcessCls::RFPCMainProcess_GPU_NoAntPattern(size_t startprfid, size_t prfcount, int devId)
{
PRINT("dev ID:%d,start PRF ID: %d , PRF COUNT: %d \n", devId,startprfid,prfcount);
PRINT("dev ID:%d,start PRF ID: %d , PRF COUNT: %d \n", devId, startprfid, prfcount);
/// 显存不限制
cudaSetDevice(devId); // 确保当前线程操作指定的GPU设备
@ -993,147 +993,158 @@ ErrorCode RFPCProcessCls::RFPCMainProcess_GPU_NoAntPattern(size_t startprfid, si
gdalImage demxyz(this->demxyzPath);// 地面点坐标
gdalImage demlandcls(this->LandCoverPath);// 地表覆盖类型
gdalImage slpxyz(this->demsloperPath);// 地面坡向
// 处理地面坐标
long demRow = demxyz.height;
long demCol = demxyz.width;
size_t demCount = size_t(demRow) * size_t(demCol);
std::shared_ptr<double> demX = readDataArr<double>(demxyz, 0, 0, demRow, demCol, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> demY = readDataArr<double>(demxyz, 0, 0, demRow, demCol, 2, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> demZ = readDataArr<double>(demxyz, 0, 0, demRow, demCol, 3, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> slpX = readDataArr<double>(slpxyz, 0, 0, demRow, demCol, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> slpY = readDataArr<double>(slpxyz, 0, 0, demRow, demCol, 2, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> slpZ = readDataArr<double>(slpxyz, 0, 0, demRow, demCol, 3, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<long> clsArr = readDataArr<long>(demlandcls, 0, 0, demRow, demCol, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
long allDemRow = Memory1MB/demxyz.width/8/3*6000;
//allDemRow = allDemRow < demxyz.height ? allDemRow : demxyz.height;
for(long demId=0;demId< demxyz.height;demId=demId+ allDemRow){
PRINT("dem cover processbar: [%f precent]\n", demId * 100.0 / demxyz.height);
long demRow = allDemRow;
demRow = demRow + demId < demxyz.height ? demRow : demxyz.height - demId;
long demCol = demxyz.width;
long long demCount = long long(demRow) * long long(demCol);
// 检索类别数量
std::map<long, size_t> clsCountDict;
for (const auto& pair : clssigmaParamsDict) {
clsCountDict.insert(std::pair<long, size_t>(pair.first, 0));
}
std::shared_ptr<double> demX = readDataArr<double>(demxyz, demId, 0, demRow, demCol, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> demY = readDataArr<double>(demxyz, demId, 0, demRow, demCol, 2, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> demZ = readDataArr<double>(demxyz, demId, 0, demRow, demCol, 3, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> slpX = readDataArr<double>(slpxyz, demId, 0, demRow, demCol, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> slpY = readDataArr<double>(slpxyz, demId, 0, demRow, demCol, 2, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> slpZ = readDataArr<double>(slpxyz, demId, 0, demRow, demCol, 3, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<long> clsArr = readDataArr<long>(demlandcls, demId, 0, demRow, demCol, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
PRINT("demRow: %d , demCol:%d \n", demRow, demCol);
for (size_t i = 0; i < demCount; i++) {
long clsid = clsArr.get()[i];
if (clsCountDict.find(clsid) != clsCountDict.end()) {
clsCountDict[clsid] = clsCountDict[clsid] + 1;
}
}
std::map<long, std::shared_ptr<GoalState>> clsGoalStateDict;
for (const auto& pair : clsCountDict) {
if (pair.second > 0) {
clsGoalStateDict.insert(
std::pair<long, std::shared_ptr<GoalState>>(
pair.first,
std::shared_ptr<GoalState>((GoalState*)mallocCUDAHost(sizeof(GoalState) * pair.second), FreeCUDAHost)));
PRINT("clsid : %d ,Count: %d\n", pair.first, pair.second);
}
}
// 分块处理大小
size_t blocksize = 1000;
std::map<long, size_t> clsCountDictTemp;
for (const auto& pair : clsCountDict) {
clsCountDictTemp.insert(std::pair<long, size_t>(pair.first, pair.second));
}
double sumdemx = 0;
for (long i = 0; i < demCount; i++) {
sumdemx= sumdemx+demX.get()[i];
}
for (long i = 0; i < demCount; i++) {
long clsid = clsArr.get()[i];
size_t Currentclscount = clsCountDictTemp[clsid];
size_t allclscount = clsCountDict[clsid];
if (clsGoalStateDict.find(clsid) == clsGoalStateDict.end()) {
continue;
// 检索类别数量
std::map<long, size_t> clsCountDict;
for (const auto& pair : clssigmaParamsDict) {
clsCountDict.insert(std::pair<long, size_t>(pair.first, 0));
}
clsGoalStateDict[clsid].get()[Currentclscount - allclscount];
for (long long i = 0; i < demCount; i++) {
long clsid = clsArr.get()[i];
if (clsCountDict.find(clsid) != clsCountDict.end()) {
clsCountDict[clsid] = clsCountDict[clsid] + 1;
}
}
std::map<long, std::shared_ptr<GoalState>> clsGoalStateDict;
for (const auto& pair : clsCountDict) {
if (pair.second > 0) {
clsGoalStateDict.insert(
std::pair<long, std::shared_ptr<GoalState>>(
pair.first,
std::shared_ptr<GoalState>((GoalState*)mallocCUDAHost(sizeof(GoalState) * pair.second), FreeCUDAHost)));
PRINT("clsid : %d ,Count: %d\n", pair.first, pair.second);
}
}
clsGoalStateDict[clsid].get()[allclscount- Currentclscount].Tx = demX.get()[i];
clsGoalStateDict[clsid].get()[allclscount - Currentclscount].Ty = demY.get()[i];
clsGoalStateDict[clsid].get()[allclscount - Currentclscount].Tz = demZ.get()[i];
clsGoalStateDict[clsid].get()[allclscount - Currentclscount].TsX = slpX.get()[i];
clsGoalStateDict[clsid].get()[allclscount - Currentclscount].TsY = slpY.get()[i];
clsGoalStateDict[clsid].get()[allclscount - Currentclscount].TsZ = slpZ.get()[i];
clsGoalStateDict[clsid].get()[allclscount - Currentclscount].cls = clsArr.get()[i];
clsCountDictTemp[clsid] = clsCountDictTemp[clsid] - 1;
}
// 分块处理大小
size_t blocksize = 1000;
std::map<long, size_t> clsCountDictTemp;
for (const auto& pair : clsCountDict) {
clsCountDictTemp.insert(std::pair<long, size_t>(pair.first, pair.second));
}
double sumdemx = 0;
for (long i = 0; i < demCount; i++) {
sumdemx = sumdemx + demX.get()[i];
}
RFPCTask task;
// 参数声明
task.freqNum = this->EchoSimulationData->getPlusePoints();
task.prfNum = prfcount;
task.Rref = this->EchoSimulationData->getRefPhaseRange();
task.Rnear = this->EchoSimulationData->getNearRange();
task.Rfar = this->EchoSimulationData->getFarRange();
task.Pt = this->TaskSetting->getPt();
task.startFreq = this->EchoSimulationData->getCenterFreq() - this->EchoSimulationData->getBandwidth() / 2;
task.stepFreq = this->EchoSimulationData->getBandwidth() / (task.freqNum - 1);
task.d_echoData = (cuComplex*)mallocCUDADevice(prfcount * task.freqNum * sizeof(cuComplex), devId);
for (long i = 0; i < demCount; i++) {
long clsid = clsArr.get()[i];
size_t Currentclscount = clsCountDictTemp[clsid];
size_t allclscount = clsCountDict[clsid];
PRINT("Dev:%d ,freqnum%d , prfnum:%d ,Rref: %e ,Rnear : %e ,Rfar: %e , StartFreq: %e ,DeletFreq: %e \n",
devId,task.freqNum,task.prfNum,task.Rref,task.Rnear,task.Rfar,task.startFreq,task.stepFreq);
if (clsGoalStateDict.find(clsid) == clsGoalStateDict.end()) {
continue;
}
// 天线位置
{
std::shared_ptr<SatelliteAntPos> antplise = this->EchoSimulationData->getAntPosVelc();
std::shared_ptr<SateState> h_antlist((SateState*)mallocCUDAHost(prfcount * sizeof(SateState)), FreeCUDAHost);
clsGoalStateDict[clsid].get()[Currentclscount - allclscount];
for (long i = 0; i < prfcount; i++) {
h_antlist.get()[i].Px = antplise.get()[i + startprfid].Px;
h_antlist.get()[i].Py = antplise.get()[i + startprfid].Py;
h_antlist.get()[i].Pz = antplise.get()[i + startprfid].Pz;
h_antlist.get()[i].Vx = antplise.get()[i + startprfid].Vx;
h_antlist.get()[i].Vy = antplise.get()[i + startprfid].Vy;
h_antlist.get()[i].Vz = antplise.get()[i + startprfid].Vz;
h_antlist.get()[i].antDirectX = antplise.get()[i + startprfid].AntDirectX;
h_antlist.get()[i].antDirectY = antplise.get()[i + startprfid].AntDirectY;
h_antlist.get()[i].antDirectZ = antplise.get()[i + startprfid].AntDirectZ;
clsGoalStateDict[clsid].get()[allclscount - Currentclscount].Tx = demX.get()[i];
clsGoalStateDict[clsid].get()[allclscount - Currentclscount].Ty = demY.get()[i];
clsGoalStateDict[clsid].get()[allclscount - Currentclscount].Tz = demZ.get()[i];
clsGoalStateDict[clsid].get()[allclscount - Currentclscount].TsX = slpX.get()[i];
clsGoalStateDict[clsid].get()[allclscount - Currentclscount].TsY = slpY.get()[i];
clsGoalStateDict[clsid].get()[allclscount - Currentclscount].TsZ = slpZ.get()[i];
clsGoalStateDict[clsid].get()[allclscount - Currentclscount].cls = clsArr.get()[i];
clsCountDictTemp[clsid] = clsCountDictTemp[clsid] - 1;
}
RFPCTask task;
// 参数声明
task.freqNum = this->EchoSimulationData->getPlusePoints();
task.prfNum = prfcount;
task.Rref = this->EchoSimulationData->getRefPhaseRange();
task.Rnear = this->EchoSimulationData->getNearRange();
task.Rfar = this->EchoSimulationData->getFarRange();
task.Pt = this->TaskSetting->getPt();
task.startFreq = this->EchoSimulationData->getCenterFreq() - this->EchoSimulationData->getBandwidth() / 2;
task.stepFreq = this->EchoSimulationData->getBandwidth() / (task.freqNum - 1);
task.d_echoData = (cuComplex*)mallocCUDADevice(prfcount * task.freqNum * sizeof(cuComplex), devId);
CUDA_MemsetBlock(task.d_echoData, make_cuComplex(0, 0), prfcount * task.freqNum);
PRINT("Dev:%d ,freqnum%d , prfnum:%d ,Rref: %e ,Rnear : %e ,Rfar: %e , StartFreq: %e ,DeletFreq: %e \n",
devId, task.freqNum, task.prfNum, task.Rref, task.Rnear, task.Rfar, task.startFreq, task.stepFreq);
// 天线位置
{
std::shared_ptr<SatelliteAntPos> antplise = this->EchoSimulationData->getAntPosVelc();
std::shared_ptr<SateState> h_antlist((SateState*)mallocCUDAHost(prfcount * sizeof(SateState)), FreeCUDAHost);
for (long i = 0; i < prfcount; i++) {
h_antlist.get()[i].Px = antplise.get()[i + startprfid].Px;
h_antlist.get()[i].Py = antplise.get()[i + startprfid].Py;
h_antlist.get()[i].Pz = antplise.get()[i + startprfid].Pz;
h_antlist.get()[i].Vx = antplise.get()[i + startprfid].Vx;
h_antlist.get()[i].Vy = antplise.get()[i + startprfid].Vy;
h_antlist.get()[i].Vz = antplise.get()[i + startprfid].Vz;
h_antlist.get()[i].antDirectX = antplise.get()[i + startprfid].AntDirectX;
h_antlist.get()[i].antDirectY = antplise.get()[i + startprfid].AntDirectY;
h_antlist.get()[i].antDirectZ = antplise.get()[i + startprfid].AntDirectZ;
}
task.antlist = (SateState*)mallocCUDADevice(prfcount * sizeof(SateState), devId);
HostToDevice(h_antlist.get(), task.antlist, sizeof(SateState) * prfcount);
}
task.antlist = (SateState*)mallocCUDADevice(prfcount * sizeof(SateState), devId);
HostToDevice(h_antlist.get(), task.antlist, sizeof(SateState) * prfcount);
// 分块计算
for (const auto& pair : clsGoalStateDict) {
long clsid = pair.first;
size_t clscount = clsCountDict[clsid];
PRINT("Process Class ID : %d , Count: %d Device: %d\n", clsid, clscount,devId);
task.targetnum = clscount;
task.goallist = (GoalState*)mallocCUDADevice(clscount * sizeof(GoalState), devId);
HostToDevice(clsGoalStateDict[clsid].get(), task.goallist, sizeof(GoalState) * clscount);
task.sigma0_cls = clsCUDASigmaParamsDict[clsid];
ProcessRFPCTask(task, devId);
FreeCUDADevice(task.goallist);
}
this->SaveBlockSimulationEchoArr(task.d_echoData, prfcount, task.freqNum, startprfid);
FreeCUDADevice(task.d_echoData);
FreeCUDADevice(task.antlist);
//FreeCUDADevice(task.goallist);
}
// 分块计算
for (const auto& pair : clsGoalStateDict) {
long clsid = pair.first;
size_t clscount = clsCountDict[clsid];
PRINT("Process Class ID : %d , Count: %d\n", clsid, clscount);
task.targetnum = clscount;
task.goallist = (GoalState*)mallocCUDADevice(clscount * sizeof(GoalState), devId);
HostToDevice(clsGoalStateDict[clsid].get(), task.goallist, sizeof(GoalState) * clscount);
task.sigma0_cls = clsCUDASigmaParamsDict[clsid];
ProcessRFPCTask(task,devId);
FreeCUDADevice(task.goallist);
}
this->SaveBlockSimulationEchoArr(task.d_echoData, prfcount, task.freqNum, startprfid);
FreeCUDADevice(task.d_echoData);
FreeCUDADevice(task.antlist);
//FreeCUDADevice(task.goallist);
PRINT("dem cover processbar: [100 precent]\n");
return ErrorCode::SUCCESS;
}
ErrorCode RFPCProcessCls::SaveBlockSimulationEchoArr(cuComplex* d_echoData,size_t prfcount,size_t freqNum,long startprfid)
ErrorCode RFPCProcessCls::SaveBlockSimulationEchoArr(cuComplex* d_echoData, size_t prfcount, size_t freqNum, long startprfid)
{
// 文件读写
@ -1143,18 +1154,18 @@ ErrorCode RFPCProcessCls::SaveBlockSimulationEchoArr(cuComplex* d_echoData,size_
cuComplex* h_echoData = (cuComplex*)mallocCUDAHost(prfcount * freqNum * sizeof(cuComplex));
DeviceToHost(h_echoData, d_echoData, prfcount * freqNum * sizeof(cuComplex));
DeviceToHost(h_echoData, d_echoData, prfcount * freqNum * sizeof(cuComplex));
long prfcount_read = prfcount;
std::shared_ptr<std::complex<double>> fileEchoArr = this->EchoSimulationData->getEchoArr(startprfid, prfcount_read);
for (size_t i = 0; i < prfcount; i++) {
for (size_t j = 0; j < freqNum; j++) {
for (size_t j = 0; j < freqNum; j++) {
std::complex<double> temp = fileEchoArr.get()[i * freqNum + j];
fileEchoArr.get()[i * freqNum + j] = std::complex<double>(
temp.real() + h_echoData[i * freqNum + j].x,
temp.imag() + h_echoData[i * freqNum + j].y
);
temp.real() + h_echoData[i * freqNum + j].x,
temp.imag() + h_echoData[i * freqNum + j].y
);
}
}