RasterProcessTool/SimulationSAR/RTPCProcessCls.cpp

791 lines
30 KiB
C++
Raw Normal View History

#include "stdafx.h"
#include "RTPCProcessCls.h"
#include "BaseConstVariable.h"
#include "SARSatelliteSimulationAbstractCls.h"
#include "SARSimulationTaskSetting.h"
#include "SatelliteOribtModel.h"
#include <QDebug>
#include "ImageOperatorBase.h"
#include "GeoOperator.h"
#include "EchoDataFormat.h"
#include <QDir>
#include <QDatetime>
#include <omp.h>
2024-11-25 17:51:20 +00:00
#include <QProgressDialog>
#ifdef DEBUGSHOWDIALOG
#include "ImageShowDialogClass.h"
#endif
RTPCProcessCls::RTPCProcessCls()
{
this->PluseCount = 0;
this->PlusePoint = 0;
this->TaskSetting = nullptr;
this->EchoSimulationData = nullptr;
this->DEMTiffPath="";
this->LandCoverPath="";
this->HHSigmaPath="";
this->HVSigmaPath="";
this->VHSigmaPath="";
this->VVSigmaPath = "";
this->OutEchoPath = "";
this->DEMTiffPath.clear();
this->LandCoverPath.clear();
this->HHSigmaPath.clear();
this->HVSigmaPath.clear();
this->VHSigmaPath.clear();
this->VVSigmaPath.clear();
this->OutEchoPath.clear();
this->SigmaDatabasePtr=std::shared_ptr<SigmaDatabase>(new SigmaDatabase);
}
RTPCProcessCls::~RTPCProcessCls()
{
}
void RTPCProcessCls::setTaskSetting(std::shared_ptr < AbstractSARSatelliteModel> TaskSetting)
{
this->TaskSetting= std::shared_ptr < AbstractSARSatelliteModel>(TaskSetting);
qDebug() << "RTPCProcessCls::setTaskSetting";
}
void RTPCProcessCls::setEchoSimulationDataSetting(std::shared_ptr<EchoL0Dataset> EchoSimulationData)
{
this->EchoSimulationData =std::shared_ptr<EchoL0Dataset> (EchoSimulationData);
qDebug() << "RTPCProcessCls::setEchoSimulationDataSetting";
}
void RTPCProcessCls::setTaskFileName(QString EchoFileName)
{
this->TaskFileName = EchoFileName;
}
void RTPCProcessCls::setDEMTiffPath(QString DEMTiffPath)
{
this->DEMTiffPath = DEMTiffPath;
}
void RTPCProcessCls::setLandCoverPath(QString LandCoverPath)
{
this->LandCoverPath = LandCoverPath;
}
void RTPCProcessCls::setHHSigmaPath(QString HHSigmaPath)
{
this->HHSigmaPath = HHSigmaPath;
}
void RTPCProcessCls::setHVSigmaPath(QString HVSigmaPath)
{
this->HVSigmaPath = HVSigmaPath;
}
void RTPCProcessCls::setVHSigmaPath(QString VHSigmaPath)
{
this->VHSigmaPath = VHSigmaPath;
}
void RTPCProcessCls::setVVSigmaPath(QString VVSigmaPath)
{
this->VVSigmaPath = VVSigmaPath;
}
void RTPCProcessCls::setOutEchoPath(QString OutEchoPath)
{
this->OutEchoPath = OutEchoPath;
}
ErrorCode RTPCProcessCls::Process(long num_thread)
{
// RTPC <20>
qDebug() << u8"params init ....";
ErrorCode stateCode = this->InitParams();
if (stateCode != ErrorCode::SUCCESS){
return stateCode;
}
else {}
qDebug() << "DEMMainProcess";
stateCode = this->DEMPreprocess();
if (stateCode != ErrorCode::SUCCESS) {
return stateCode;
}
else {}
qDebug() << "RTPCMainProcess";
stateCode = this->RTPCMainProcess(num_thread);
if (stateCode != ErrorCode::SUCCESS) {
return stateCode;
}else{}
return ErrorCode::SUCCESS;
}
ErrorCode RTPCProcessCls::InitParams()
{
if (nullptr==this->TaskSetting||this->DEMTiffPath.isEmpty() ||
this->LandCoverPath.isEmpty() || this->HHSigmaPath.isEmpty() ||
this->HVSigmaPath.isEmpty() || this->VHSigmaPath.isEmpty() ||
this->VVSigmaPath.isEmpty()) {
return ErrorCode::RTPC_PARAMSISEMPTY;
}
else {
}
// <20><>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>·<EFBFBD><C2B7>
this->OutEchoPath = QDir(this->OutEchoPath).absolutePath();
// <20>ز<EFBFBD><D8B2><EFBFBD>С
double imgStart_end = this->TaskSetting->getSARImageEndTime() - this->TaskSetting->getSARImageStartTime();
this->PluseCount = ceil(imgStart_end * this->TaskSetting->getPRF());
double rangeTimeSample = (this->TaskSetting->getFarRange() - this->TaskSetting->getNearRange()) * 2.0 / LIGHTSPEED;
this->PlusePoint = ceil(rangeTimeSample * this->TaskSetting->getFs());
// <20><>ʼ<EFBFBD><CABC><EFBFBD>ز<EFBFBD><D8B2><EFBFBD><EFBFBD><EFBFBD>λ<EFBFBD><CEBB>
qDebug() << "--------------Echo Data Setting ---------------------------------------";
this->EchoSimulationData=std::shared_ptr<EchoL0Dataset>(new EchoL0Dataset);
this->EchoSimulationData->setCenterFreq(this->TaskSetting->getCenterFreq());
this->EchoSimulationData->setNearRange(this->TaskSetting->getNearRange());
this->EchoSimulationData->setFarRange(this->TaskSetting->getFarRange());
this->EchoSimulationData->setFs(this->TaskSetting->getFs());
this->EchoSimulationData->setCenterAngle(this->TaskSetting->getCenterLookAngle());
this->EchoSimulationData->setLookSide(this->TaskSetting->getIsRightLook() ? "R" : "L");
this->EchoSimulationData->OpenOrNew(OutEchoPath, TaskFileName, PluseCount, PlusePoint);
QString tmpfolderPath = QDir(OutEchoPath).filePath("tmp");
if (QDir(tmpfolderPath).exists() == false) {
QDir(OutEchoPath).mkpath(tmpfolderPath);
}
this->tmpfolderPath = tmpfolderPath;
return ErrorCode::SUCCESS;
}
ErrorCode RTPCProcessCls::DEMPreprocess()
{
this->demxyzPath = QDir(tmpfolderPath).filePath("demxyz.tif");
gdalImage demds(this->DEMTiffPath);
gdalImage demxyz = CreategdalImage(demxyzPath, demds.height, demds.width, 3, demds.gt, demds.projection, true, true);// X,Y,Z
// <20>ֿ<EFBFBD><D6BF><EFBFBD><EFBFBD>㲢ת<E3B2A2><D7AA>ΪXYZ
Eigen::MatrixXd demArr = demds.getData(0, 0, demds.height, demds.width, 1);
Eigen::MatrixXd demR = demArr;
Landpoint LandP{ 0,0,0 };
Point3 GERpoint{ 0,0,0 };
double R = 0;
double dem_row = 0, dem_col = 0, dem_alt = 0;
long line_invert = 1000;
double rowidx = 0;
double colidx = 0;
for (int max_rows_ids = 0; max_rows_ids < demds.height; max_rows_ids = max_rows_ids + line_invert) {
Eigen::MatrixXd demdata = demds.getData(max_rows_ids, 0, line_invert, demds.width, 1);
Eigen::MatrixXd xyzdata_x = demdata.array() * 0;
Eigen::MatrixXd xyzdata_y = demdata.array() * 0;
Eigen::MatrixXd xyzdata_z = demdata.array() * 0;
int datarows = demdata.rows();
int datacols = demdata.cols();
for (int i = 0; i < datarows; i++) {
for (int j = 0; j < datacols; j++) {
rowidx = i + max_rows_ids;
colidx = j;
demds.getLandPoint(rowidx, colidx, demdata(i, j), LandP); // <20><>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
LLA2XYZ(LandP, GERpoint); // <20><>γ<EFBFBD><CEB3>ת<EFBFBD><D7AA>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵ
xyzdata_x(i, j) = GERpoint.x;
xyzdata_y(i, j) = GERpoint.y;
xyzdata_z(i, j) = GERpoint.z;
}
}
demxyz.saveImage(xyzdata_x, max_rows_ids, 0, 1);
demxyz.saveImage(xyzdata_y, max_rows_ids, 0, 2);
demxyz.saveImage(xyzdata_z, max_rows_ids, 0, 3);
}
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
this->demsloperPath=QDir(tmpfolderPath).filePath("demsloper.tif");
this->demmaskPath = QDir(tmpfolderPath).filePath("demmask.tif");
gdalImage demsloperxyz = CreategdalImage(this->demsloperPath, demds.height, demds.width, 4, demds.gt, demds.projection, true, true);// X,Y,Z,cosangle
gdalImage demmask = CreategdalImage(this->demmaskPath, demxyz.height, demxyz.width, 1, demxyz.gt, demxyz.projection, true, true);// X,Y,Z
line_invert = 1000;
long start_ids = 0;
long dem_rows = 0, dem_cols = 0;
for (start_ids = 1; start_ids < demds.height; start_ids = start_ids + line_invert) {
Eigen::MatrixXd demdata = demds.getData(start_ids - 1, 0, line_invert + 2, demxyz.width, 1);
long startlineid = start_ids;
Eigen::MatrixXd maskdata = demmask.getData(start_ids - 1, 0, line_invert + 2, demxyz.width, 1);
Eigen::MatrixXd demsloper_x = demsloperxyz.getData(start_ids - 1, 0, line_invert + 2, demxyz.width, 1);
Eigen::MatrixXd demsloper_y = demsloperxyz.getData(start_ids - 1, 0, line_invert + 2, demxyz.width, 2);
Eigen::MatrixXd demsloper_z = demsloperxyz.getData(start_ids - 1, 0, line_invert + 2, demxyz.width, 3);
Eigen::MatrixXd demsloper_angle = demsloperxyz.getData(start_ids - 1, 0, line_invert + 2, demxyz.width, 4);
maskdata = maskdata.array() * 0;
Landpoint p0, p1, p2, p3, p4,pslopeVector,pp;
Vector3D slopeVector;
dem_rows = maskdata.rows();
dem_cols = maskdata.cols();
double sloperAngle = 0;
Vector3D Zaxis = { 0,0,1 };
double rowidx = 0, colidx = 0;
for (long i = 1; i < dem_rows - 1; i++) {
for (long j = 1; j < dem_cols - 1; j++) {
rowidx = i + startlineid;
colidx = j;
demds.getLandPoint(rowidx, colidx, demdata(i, j), p0);
demds.getLandPoint(rowidx-1, colidx, demdata(i-1, j), p1);
demds.getLandPoint(rowidx, colidx-1, demdata(i, j-1), p2);
demds.getLandPoint(rowidx+1, colidx, demdata(i+1, j), p3);
demds.getLandPoint(rowidx, colidx+1, demdata(i, j+1), p4);
pslopeVector = getSlopeVector(p0, p1, p2, p3, p4); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʸ<EFBFBD><CAB8>
slopeVector = { pslopeVector.lon,pslopeVector.lat,pslopeVector.ati };
pp = LLA2XYZ(p0);
Zaxis.x = pp.lon;
Zaxis.y = pp.lat;
Zaxis.z = pp.ati;
sloperAngle = getCosAngle(slopeVector, Zaxis) ; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
demsloper_x(i, j) = slopeVector.x;
demsloper_y(i, j) = slopeVector.y;
demsloper_z(i, j) = slopeVector.z;
demsloper_angle(i, j) = sloperAngle;
maskdata(i, j)++;
}
}
demmask.saveImage(maskdata, start_ids - 1, 0, 1);
demsloperxyz.saveImage(demsloper_x, start_ids - 1, 0, 1);
demsloperxyz.saveImage(demsloper_y, start_ids - 1, 0, 2);
demsloperxyz.saveImage(demsloper_z, start_ids - 1, 0, 3);
demsloperxyz.saveImage(demsloper_angle, start_ids - 1, 0, 4);
}
return ErrorCode::SUCCESS;
}
ErrorCode RTPCProcessCls::RTPCMainProcess(long num_thread)
{
omp_set_num_threads(num_thread);// <20><><EFBFBD><EFBFBD>openmp <20>߳<EFBFBD><DFB3><EFBFBD><EFBFBD><EFBFBD>
double widthSpace = LIGHTSPEED/2/this->TaskSetting->getFs();
double prf_time = 0;
double dt = 1 / this->TaskSetting->getPRF();// <20><>ȡÿ<C8A1><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
bool antflag = true; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
Landpoint LandP{ 0,0,0 };
Point3 GERpoint{ 0,0,0 };
double R = 0;
double dem_row = 0 , dem_col=0, dem_alt=0;
long double imageStarttime = 0;
imageStarttime=this->TaskSetting->getSARImageStartTime();
//std::vector<SatelliteOribtNode> sateOirbtNodes(this->PluseCount);
std::shared_ptr<SatelliteOribtNode[]> sateOirbtNodes(new SatelliteOribtNode[this->PluseCount], delArrPtr);
{ // <20><>̬<EFBFBD><CCAC><EFBFBD>㲻ͬ
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̬
std::shared_ptr<double> antpos = this->EchoSimulationData->getAntPos();
double dAt = 1e-6;
double prf_time_dt = 0;
Landpoint InP{0,0,0}, outP{0,0,0};
for (long prf_id = 0; prf_id < this->PluseCount; prf_id++) {
prf_time = dt * prf_id;
prf_time_dt = prf_time + dAt;
SatelliteOribtNode sateOirbtNode;
SatelliteOribtNode sateOirbtNode_dAt;
this->TaskSetting->getSatelliteOribtNode(prf_time, sateOirbtNode, antflag);
this->TaskSetting->getSatelliteOribtNode(prf_time_dt, sateOirbtNode_dAt, antflag);
sateOirbtNode.AVx = (sateOirbtNode_dAt.Vx - sateOirbtNode.Vx) / dAt; // <20><><EFBFBD>ٶ<EFBFBD>
sateOirbtNode.AVy = (sateOirbtNode_dAt.Vy - sateOirbtNode.Vy) / dAt;
sateOirbtNode.AVz = (sateOirbtNode_dAt.Vz - sateOirbtNode.Vz) / dAt;
InP.lon = sateOirbtNode.Px;
InP.lat = sateOirbtNode.Py;
InP.ati = sateOirbtNode.Pz;
outP=XYZ2LLA(InP);
2024-11-25 17:51:20 +00:00
antpos.get()[prf_id * 19 + 0] = prf_time + imageStarttime;
antpos.get()[prf_id * 19 + 1] = sateOirbtNode.Px;
antpos.get()[prf_id * 19 + 2] = sateOirbtNode.Py;
antpos.get()[prf_id * 19 + 3] = sateOirbtNode.Pz;
antpos.get()[prf_id * 19 + 4] = sateOirbtNode.Vx;
antpos.get()[prf_id * 19 + 5] = sateOirbtNode.Vy;
antpos.get()[prf_id * 19 + 6] = sateOirbtNode.Vz;
antpos.get()[prf_id * 19 + 7] = sateOirbtNode.AntDirecX;
antpos.get()[prf_id * 19 + 8] = sateOirbtNode.AntDirecY;
antpos.get()[prf_id * 19 + 9] = sateOirbtNode.AntDirecZ;
antpos.get()[prf_id * 19 + 10] = sateOirbtNode.AVx;
antpos.get()[prf_id * 19 + 11] = sateOirbtNode.AVy;
antpos.get()[prf_id * 19 + 12] = sateOirbtNode.AVz;
antpos.get()[prf_id * 19 + 13] = sateOirbtNode.zeroDopplerDirectX;
antpos.get()[prf_id * 19 + 14] = sateOirbtNode.zeroDopplerDirectY;
antpos.get()[prf_id * 19 + 15] = sateOirbtNode.zeroDopplerDirectZ;
antpos.get()[prf_id * 19 + 16] = outP.lon;
antpos.get()[prf_id * 19 + 17] = outP.lat;
antpos.get()[prf_id * 19 + 18] = outP.ati;
sateOirbtNodes[prf_id] = sateOirbtNode;
}
this->EchoSimulationData->saveAntPos(antpos);
antpos.reset();
qDebug() << "Ant position finished sucessfully !!!";
}
// <20>ز<EFBFBD>
long echoIdx = 0;
gdalImage demxyz (demxyzPath );// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
gdalImage demlandcls(this->LandCoverPath);// <20>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
gdalImage demsloperxyz(this->demsloperPath);// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
double NearRange = this->EchoSimulationData->getNearRange(); // <20><>б<EFBFBD><D0B1>
double FarRange = this->EchoSimulationData->getFarRange();
double TimgNearRange = 2 * NearRange / LIGHTSPEED;
double TimgFarRange = 2 * FarRange / LIGHTSPEED;
double Fs = this->TaskSetting->getFs(); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
double Pt = this->TaskSetting->getPt()*this->TaskSetting->getGri();// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѹ 1v
//double GainAntLen = -3;// -3dB Ϊ<><CEAA><EFBFBD>߰뾶
long pluseCount = this->PluseCount;
// <20><><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
std::shared_ptr<AbstractRadiationPattern> TransformPattern = this->TaskSetting->getTransformRadiationPattern(); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
std::shared_ptr< AbstractRadiationPattern> ReceivePattern = this->TaskSetting->getReceiveRadiationPattern(); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
std::shared_ptr<std::complex<double>> echo = this->EchoSimulationData->getEchoArr();
long PlusePoint = this->EchoSimulationData->getPlusePoints();
// <20><>ʼ<EFBFBD><CABC> Ϊ 0
for (long i = 0; i < pluseCount * PlusePoint; i++) {
echo.get()[i] = std::complex<double>(0,0);
}
this->EchoSimulationData->saveEchoArr(echo, 0, PluseCount);
POLARTYPEENUM polartype = this->TaskSetting->getPolarType();
long demrowStep = std::ceil(Memory1MB*10 / 8 / demxyz.width) ;
long line_invert = demrowStep > 3 ? demrowStep : 3;
double lamda = this->TaskSetting->getCenterLamda(); // <20><><EFBFBD><EFBFBD>
omp_lock_t lock; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
omp_init_lock(&lock); // <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>
// DEM<45><4D><EFBFBD><EFBFBD>
long start_ids = 1250;
for (start_ids = 1; start_ids < demxyz.height; start_ids = start_ids + line_invert) { // 8+ 17 + 0.3 MB
QDateTime current = QDateTime::currentDateTime();
long pluseStep = Memory1MB * 100 / 3 / PlusePoint;
if (pluseStep * num_thread *3 > this->PluseCount) {
pluseStep = this->PluseCount / num_thread /3;
}
pluseStep = pluseStep > 50 ? pluseStep : 50;
qDebug()<< current.toString("yyyy-MM-dd HH:mm:ss.zzz") <<" \tstart \t "<< start_ids << " - "<< start_ids + line_invert <<"\t" << demxyz.height<<"\t pluseCount:\t"<< pluseStep;
// <20>ļ<EFBFBD><C4BC><EFBFBD>ȡ
Eigen::MatrixXd dem_x = demxyz.getData(start_ids - 1, 0, line_invert + 1, demxyz.width, 1); //
Eigen::MatrixXd dem_y = demxyz.getData(start_ids - 1, 0, line_invert + 1, demxyz.width, 2); //
Eigen::MatrixXd dem_z = demxyz.getData(start_ids - 1, 0, line_invert + 1, demxyz.width, 3); //
// <20>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD>
std::shared_ptr<long> dem_landcls = readDataArr<long>(demlandcls, start_ids - 1, 0, line_invert + 1, demxyz.width, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD); // <20>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
long* dem_landcls_ptr = dem_landcls.get();
double localAngle = 30.0;
bool sigmaNoZeroFlag = true;
for (long ii = 0; ii < dem_x.rows(); ii++) {
for (long jj = 0; jj < dem_y.cols(); jj++) {
if (0 != this->SigmaDatabasePtr->getAmp(dem_landcls_ptr[dem_x.cols() * ii + jj], localAngle, polartype)) {
sigmaNoZeroFlag = false;
break;
}
}
if (!sigmaNoZeroFlag) {
break;
}
}
if (sigmaNoZeroFlag) {
continue;
}
//#ifdef DEBUGSHOWDIALOG
// dialog->load_double_MatrixX_data(dem_z, "dem_z");
//#endif
Eigen::MatrixXd demsloper_x = demsloperxyz.getData(start_ids - 1, 0, line_invert + 1, demxyz.width, 1); //
Eigen::MatrixXd demsloper_y = demsloperxyz.getData(start_ids - 1, 0, line_invert + 1, demxyz.width, 2); //
Eigen::MatrixXd demsloper_z = demsloperxyz.getData(start_ids - 1, 0, line_invert + 1, demxyz.width, 3); //
Eigen::MatrixXd sloperAngle = demsloperxyz.getData(start_ids - 1, 0, line_invert + 1, demxyz.width, 4); //
sloperAngle = sloperAngle.array() * T180_PI;
long dem_rows = dem_x.rows();
long dem_cols = dem_x.cols();
long freqidx = 0;//
#ifdef DEBUGSHOWDIALOG
ImageShowDialogClass* dialog = new ImageShowDialogClass(nullptr);
dialog->show();
Eigen::MatrixXd landaArr = Eigen::MatrixXd::Zero(dem_rows, dem_cols);
for (long i = 0; i < dem_rows; i++) {
for (long j = 0; j < dem_cols; j++) {
landaArr(i, j) = dem_landcls.get()[i * dem_cols + j];
}
}
dialog->load_double_MatrixX_data(landaArr, "landCover");
#endif
//qDebug() << " pluse bolck size :\t " << pluseStep << " all size:\t" << this->PluseCount;
2024-11-25 17:51:20 +00:00
long processNumber = 0;
QProgressDialog progressDialog(u8"RTPC<EFBFBD>ز<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>", u8"<EFBFBD><EFBFBD>ֹ", 0, this->PluseCount);
progressDialog.setWindowTitle(u8"RTPC<EFBFBD>ز<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>");
progressDialog.setWindowModality(Qt::WindowModal);
progressDialog.setAutoClose(true);
progressDialog.setValue(0);
progressDialog.setMaximum(this->PluseCount);
progressDialog.setMinimum(0);
progressDialog.show();
#pragma omp parallel for
for (long startprfidx = 0; startprfidx < this->PluseCount; startprfidx=startprfidx+ pluseStep) { // 17 + 0.3 MB
long prfcount_step = startprfidx + pluseStep < this->PluseCount ? pluseStep : this->PluseCount- startprfidx;
Eigen::MatrixXcd echoPluse = Eigen::MatrixXcd::Zero(prfcount_step, PlusePoint); // <20><>ǰ<EFBFBD><C7B0><EFBFBD><EFBFBD><EFBFBD>Ļز<C4BB><D8B2><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <20>ڴ<EFBFBD>Ԥ<EFBFBD><D4A4><EFBFBD><EFBFBD>
Eigen::MatrixXd Rst_x = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd Rst_y = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd Rst_z = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd R = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd localangle = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd Vst_x = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd Vst_y = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd Vst_z = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd fde = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd fr = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd Rx = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd sigam = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd echoAmp = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols()).array() + Pt;
Eigen::MatrixXd Rphi = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd TimeRange = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd TransAnt = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd ReciveAnt = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd AntTheta = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
Eigen::MatrixXd AntPhi = Eigen::MatrixXd::Zero(dem_x.rows(), dem_x.cols());
double minR = 0, maxR = 0;
double minLocalAngle = 0, maxLocalAngle = 0;
Vector3D Rt = { 0,0,0 };
SatelliteOribtNode oRs = SatelliteOribtNode{0};;
Vector3D p0 = {}, slopeVector = {}, sateAntDirect = {};
Vector3D Rs = {}, Vs = {}, Ast = {};
SatelliteAntDirect antdirectNode = {};
std::complex<double> echofreq;
std::complex<double> Imag1(0, 1);
double TAntPattern = 1; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
double RAntPanttern = 1;// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
double maxechoAmp = 1;
double tempAmp = 1;
for (long prfidx = 0; prfidx < prfcount_step; prfidx++)
{
oRs = sateOirbtNodes[prfidx + startprfidx];
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
for (long jj = 1; jj < dem_cols - 1; jj++) {
for (long ii = 1; ii < dem_rows - 1; ii++) {
p0.x = dem_x(ii, jj);
p0.y = dem_y(ii, jj);
p0.z = dem_z(ii, jj);
this->TaskSetting->getSatelliteAntDirectNormal(oRs, p0, antdirectNode);
//antdirectNode.ThetaAnt = antdirectNode.ThetaAnt * r2d;
//antdirectNode.PhiAnt = antdirectNode.PhiAnt * r2d;
AntTheta(ii, jj) = antdirectNode.ThetaAnt * r2d;
AntPhi(ii, jj) = antdirectNode.PhiAnt * r2d;
}
}
// <20><><EFBFBD><EFBFBD><E3B7A2><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
for (long jj = 1; jj < dem_cols - 1; jj++) {
for (long ii = 1; ii < dem_rows - 1; ii++) {
TransformPattern->getGainLinear(AntTheta(ii, jj), AntPhi(ii, jj), TransAnt(ii, jj));
//TransAnt(ii, jj) = TAntPattern;
}
}
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
for (long jj = 1; jj < dem_cols - 1; jj++) {
for (long ii = 1; ii < dem_rows - 1; ii++) {
TransformPattern->getGainLinear(AntTheta(ii, jj), AntPhi(ii, jj), ReciveAnt(ii, jj));
//ReciveAnt(ii, jj) = RAntPanttern;
}
}
// <20><><EFBFBD><EFBFBD><E3BEAD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
echoAmp = Pt * TransAnt.array() * ReciveAnt.array();
maxechoAmp = echoAmp.maxCoeff();
if (std::abs(maxechoAmp) < PRECISIONTOLERANCE) { // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>£<EFBFBD><C2A3><EFBFBD><EFBFBD>ںϳɿ׾<C9BF><D7BE><EFBFBD>Χ<EFBFBD><CEA7>
continue;
}
Rs.x = sateOirbtNodes[prfidx+startprfidx].Px; // <20><><EFBFBD><EFBFBD>λ<EFBFBD><CEBB>
Rs.y = sateOirbtNodes[prfidx+startprfidx].Py;
Rs.z = sateOirbtNodes[prfidx+startprfidx].Pz;
Vs.x = sateOirbtNodes[prfidx+startprfidx].Vx; // <20><><EFBFBD><EFBFBD><EFBFBD>ٶ<EFBFBD>
Vs.y = sateOirbtNodes[prfidx+startprfidx].Vy;
Vs.z = sateOirbtNodes[prfidx+startprfidx].Vz;
Ast.x = sateOirbtNodes[prfidx+startprfidx].AVx;// <20><><EFBFBD>Ǽ<EFBFBD><C7BC>ٶ<EFBFBD>
Ast.y = sateOirbtNodes[prfidx+startprfidx].AVy;
Ast.z = sateOirbtNodes[prfidx+startprfidx].AVz;
Rst_x = Rs.x - dem_x.array(); // Rst = Rs - Rt;
Rst_y = Rs.y - dem_y.array();
Rst_z = Rs.z - dem_z.array();
R = (Rst_x.array().pow(2) + Rst_y.array().pow(2) + Rst_z.array().pow(2)).array().sqrt(); // R
minR = R.minCoeff();
maxR = R.maxCoeff();
//qDebug() << "minR:\t" << minR << " maxR:\t" << maxR;
if (maxR<NearRange || minR>FarRange) {
continue;
}
else {}
// getCosAngle
// double c = dot(a, b) / (getlength(a) * getlength(b));
// return acos(c > 1 ? 1 : c < -1 ? -1 : c) * r2d;
// localangle = getCosAngle(Rst, slopeVector) * T180_PI; // ע<><D7A2><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֻ<EFBFBD><D6BB>ʵʱ<CAB5><CAB1><EFBFBD><EFBFBD><E3A3AC>Ϊ<EFBFBD><CEAA>ʵʱ<CAB5><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̫<EFBFBD><CCAB>
localangle = (Rst_x.array() * demsloper_x.array() + Rst_y.array() * demsloper_y.array() + Rst_z.array() * demsloper_z.array()).array(); // dot(a, b)
localangle = localangle.array() / R.array();
localangle = localangle.array() / (demsloper_x.array().pow(2) + demsloper_y.array().pow(2) + demsloper_z.array().pow(2)).array().sqrt().array();
localangle = localangle.array().acos(); // <20><><EFBFBD><EFBFBD>ֵ
minLocalAngle = localangle.minCoeff();
maxLocalAngle = localangle.maxCoeff();
if (maxLocalAngle<0 || minLocalAngle>PI/2) {
continue;
}
else {}
//Vst_x = Vs.x + 1 * earthRoute * dem_y.array(); // Vst = Vs - Vt;
//Vst_y = Vs.y - 1 * earthRoute * dem_x.array();
//Vst_z = Vs.z - Eigen::MatrixXd::Zero(dem_x.rows(), dem_y.cols()).array();
//// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƶ<EFBFBD><C6B5> Rst, Vst : ( - 2 / lamda) * dot(Rs - Rt, Vs - Vt) / R; // <20><><EFBFBD>غϳɿ׾<C9BF><D7BE>״<EFBFBD>ԭʼ<D4AD>ز<EFBFBD><D8B2><EFBFBD><EFBFBD><EFBFBD>ģ<EFBFBD><C4A3><EFBFBD>о<EFBFBD> 3.18
//fde = (-2 / lamda) * (Rst_x.array() * Vst_x.array() + Rst_y.array() * Vst_y.array() + Rst_z.array() * Vst_z.array()).array() / (R.array());
//// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƶ<EFBFBD><C6B5>б<EFBFBD><D0B1> // <20><><EFBFBD>غϳɿ׾<C9BF><D7BE>״<EFBFBD>ԭʼ<D4AD>ز<EFBFBD><D8B2><EFBFBD><EFBFBD><EFBFBD>ģ<EFBFBD><C4A3><EFBFBD>о<EFBFBD> 3.19
//// -(2/lamda)*( dot(Vs - Vt, Vs - Vt)/R + dot(Ast, Rs - Rt)/R - std::pow(dot(Vs - Vt, Rs - Rt),2 )/std::pow(R,3));
//fr = (-2 / lamda) *
// (Vst_x.array() * Vst_x.array() + Vst_y.array() * Vst_y.array() + Vst_z.array() * Vst_z.array()).array() / (R.array()) +
// (-2 / lamda) *
// (Ast.x * Rst_x.array() + Ast.y * Rst_y.array() + Ast.z * Rst_z.array()).array() / (R.array()) -
// (-2 / lamda) *
// (Vst_x.array() * Rst_x.array() + Vst_y.array() * Rst_y.array() + Vst_z.array() * Rst_z.array()).array().pow(2) / (R.array().pow(3));
// <20><><EFBFBD><EFBFBD><EFBFBD>ز<EFBFBD>
Rx = R;// -(lamda / 2) * (fde * TRx + 0.5 * fr * TRx * TRx); // б<><D0B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> this->SigmaDatabasePtr->getAmp(covercls, localangle, polartype); // <20><><EFBFBD><EFBFBD>ɢ<EFBFBD><C9A2>ϵ<EFBFBD><CFB5> HH
for (long ii = 0; ii < dem_x.rows(); ii++) {
for (long jj = 0; jj < dem_y.cols(); jj++) {
sigam(ii, jj) = this->SigmaDatabasePtr->getAmp(dem_landcls_ptr[dem_x.cols() * ii + jj], localangle(ii, jj)*r2d, polartype);
}
}
if (sigam.maxCoeff() > 0) {}
else {
continue;
}
// projArea = 1 / std::cos(sloperAngle) * std::sin(localangle); // ͶӰ<CDB6><D3B0><EFBFBD><EFBFBD>ϵ<EFBFBD><CFB5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>λͶӰ<CDB6><D3B0><EFBFBD><EFBFBD> 1m x 1m --ע<><D7A2><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ǽ<EFBFBD><C7BC><EFBFBD><E8A3AC><EFBFBD><EFBFBD><EFBFBD>ٲ<EFBFBD><D9B2><EFBFBD>
// echoAmp = projArea*TAntPattern * RAntPanttern * sigam / (4 * PI * R * R);
echoAmp = echoAmp.array()*sigam.array() * (1 / sloperAngle.array().cos() * localangle.array().sin()); // <20><><EFBFBD><EFBFBD>ǿ<EFBFBD><C7BF>
echoAmp = echoAmp.array() / (4 * PI * R.array().pow(2)); // <20><><EFBFBD><EFBFBD>˥<EFBFBD><CBA5>
Rphi = -4 * PI / lamda * Rx.array();// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E3B6AF>λ
// <20><><EFBFBD><EFBFBD>
TimeRange = ((2 * R.array() / LIGHTSPEED - TimgNearRange).array() * Fs).array();
double localAnglepoint = -1;
long prf_freq_id = 0;
for (long jj = 1; jj < dem_cols - 1; jj++) {
for (long ii = 1; ii < dem_rows - 1; ii++) {
prf_freq_id =std::floor(TimeRange(ii, jj));
if (prf_freq_id < 0 || prf_freq_id >= PlusePoint|| localangle(ii, jj) <0 || localangle(ii, jj) >PI / 2|| echoAmp(ii, jj)==0) {
continue;
}
echofreq = echoAmp(ii, jj) * std::exp( Rphi(ii, jj)* Imag1);
echoPluse(prfidx, prf_freq_id) = echoPluse(prfidx, prf_freq_id) + echofreq;
}
}
#ifdef DEBUGSHOWDIALOG
ImageShowDialogClass* localangledialog = new ImageShowDialogClass(dialog);
localangledialog->show();
localangledialog->load_double_MatrixX_data(localangle.array()*r2d, "localangle");
ImageShowDialogClass* sigamdialog = new ImageShowDialogClass(dialog);
sigamdialog->show();
sigamdialog->load_double_MatrixX_data(TimeRange, "TimeRange");
ImageShowDialogClass* ampdialog = new ImageShowDialogClass(dialog);
ampdialog->show();
ampdialog->load_double_MatrixX_data(echoAmp, "echoAmp");
Eigen::MatrixXd echoPluseamp = echoPluse.array().abs().cast<double>().array();
ImageShowDialogClass* echoampdialog = new ImageShowDialogClass(dialog);
echoampdialog->show();
echoampdialog->load_double_MatrixX_data(echoPluseamp, "echoPluseamp");
dialog->exec();
#endif
//qDebug() << QDateTime::currentDateTime().toString("yyyy-MM-dd HH:mm:ss.zzz") << " end " << prfidx;
}
//qDebug() << QDateTime::currentDateTime().toString("yyyy-MM-dd HH:mm:ss.zzz")<<" step "<< prfcount_step;
omp_set_lock(&lock); // <20>ز<EFBFBD><D8B2><EFBFBD><EFBFBD>帳ֵ<E5B8B3><D6B5><EFBFBD><EFBFBD>
for (long prfidx = 0; prfidx < prfcount_step; prfidx++) {
for (long freqidx = 0; freqidx < PlusePoint; freqidx++)
{
//qDebug() << prfidx << " " << freqidx << " " << echoPluse(prfidx, freqidx).real() << " + " << echoPluse(prfidx, freqidx).imag() << " j";
echo.get()[(prfidx + startprfidx) * PlusePoint + freqidx] = echo.get()[(prfidx + startprfidx) * PlusePoint + freqidx] + echoPluse(prfidx, freqidx);
}
}
//this->EchoSimulationData->saveEchoArr(echo, 0, PluseCount);
omp_unset_lock(&lock); // <20><><EFBFBD><EFBFBD>
//qDebug() << QDateTime::currentDateTime().toString("yyyy-MM-dd HH:mm:ss.zzz") << " step 2" << prfcount_step;
}
omp_set_lock(&lock); // <20><><EFBFBD><EFBFBD><EFBFBD>ļ<EFBFBD>
2024-11-25 17:51:20 +00:00
processNumber = processNumber + pluseStep;
processNumber = processNumber < progressDialog.maximum() ? processNumber : progressDialog.maximum();
progressDialog.setValue(processNumber);
this->EchoSimulationData->saveEchoArr(echo ,0, PluseCount);
omp_unset_lock(&lock); // <20><><EFBFBD><EFBFBD>
qDebug() << QDateTime::currentDateTime().toString("yyyy-MM-dd HH:mm:ss.zzz") << " \t " << start_ids << "\t--\t " << start_ids + line_invert<<"\t/\t" << demxyz.height;
2024-11-25 17:51:20 +00:00
progressDialog.close();
}
omp_destroy_lock(&lock); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
this->EchoSimulationData->saveEchoArr(echo, 0, PluseCount);
2024-11-25 17:51:20 +00:00
this->EchoSimulationData->saveToXml();
return ErrorCode::SUCCESS;
}
void RTPCProcessMain(long num_thread,QString TansformPatternFilePath, QString ReceivePatternFilePath, QString simulationtaskName,QString OutEchoPath,QString GPSXmlPath, QString TaskXmlPath, QString demTiffPath , QString LandCoverPath , QString HHSigmaPath , QString HVSigmaPath , QString VHSigmaPath , QString VVSigmaPath)
{
std::vector<RadiationPatternGainPoint> TansformPatternGainpoints = ReadGainFile(TansformPatternFilePath);
std::shared_ptr<AbstractRadiationPattern> TansformPatternGainPtr = CreateAbstractRadiationPattern(TansformPatternGainpoints);
std::vector<RadiationPatternGainPoint> ReceivePatternGainpoints = ReadGainFile(ReceivePatternFilePath);
std::shared_ptr<AbstractRadiationPattern> ReceivePatternGainPtr = CreateAbstractRadiationPattern(ReceivePatternGainpoints);
std::shared_ptr < AbstractSARSatelliteModel> task = ReadSimulationSettingsXML(TaskXmlPath);
if (nullptr == task)
{
return;
}
else {
// <20><>ӡ<EFBFBD><D3A1><EFBFBD><EFBFBD>
qDebug() << "--------------Task Seting ---------------------------------------";
qDebug() << "SARImageStartTime: " << task->getSARImageStartTime() ;
qDebug() << "SARImageEndTime: " << task->getSARImageEndTime() ;
qDebug() << "BandWidth: " << task->getBandWidth();
qDebug() << "CenterFreq: " << task->getCenterFreq();
qDebug() << "PRF: " << task->getPRF();
qDebug() << "Fs: " << task->getFs();
qDebug() << "POLAR: " << task->getPolarType();
qDebug() << "NearRange: " << task->getNearRange();
qDebug() << "FarRange: " << task->getFarRange();
qDebug() << (task->getFarRange() - task->getNearRange()) * 2 / LIGHTSPEED * task->getFs();
qDebug() << "\n\n";
}
// 1.2 <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
task->setTransformRadiationPattern(TansformPatternGainPtr);
task->setReceiveRadiationPattern(ReceivePatternGainPtr);
//2. <20><>ȡGPS<50>ڵ<EFBFBD>
std::vector<SatelliteOribtNode> nodes;
ErrorCode stateCode = ReadSateGPSPointsXML(GPSXmlPath, nodes);
if (stateCode != ErrorCode::SUCCESS)
{
qWarning() << QString::fromStdString(errorCode2errInfo(stateCode));
return;
}
else {}
std::shared_ptr<AbstractSatelliteOribtModel> SatelliteOribtModel = CreataPolyfitSatelliteOribtModel(nodes,task->getSARImageStartTime(),3); // <20>Գ<EFBFBD><D4B3><EFBFBD><EFBFBD><EFBFBD>ʼʱ<CABC><CAB1><EFBFBD><EFBFBD>Ϊ ʱ<><CAB1><EFBFBD>ο<EFBFBD><CEBF><EFBFBD><EFBFBD><EFBFBD>
SatelliteOribtModel->setbeamAngle(task->getCenterLookAngle(), task->getIsRightLook()); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
if (nullptr == SatelliteOribtModel)
{
return;
}
else {
task->setSatelliteOribtModel(SatelliteOribtModel);
}
qDebug() << "-------------- RTPC init ---------------------------------------";
RTPCProcessCls rtpc;
rtpc.setTaskSetting(task); //qDebug() << "setTaskSetting";
rtpc.setTaskFileName(simulationtaskName); //qDebug() << "setTaskFileName";
rtpc.setDEMTiffPath(demTiffPath); //qDebug() << "setDEMTiffPath";
rtpc.setLandCoverPath( LandCoverPath); //qDebug() << "setLandCoverPath";
rtpc.setHHSigmaPath( HHSigmaPath ); //qDebug() << "setHHSigmaPath";
rtpc.setHVSigmaPath( HVSigmaPath ); //qDebug() << "setHVSigmaPath";
rtpc.setVHSigmaPath( VHSigmaPath ); //qDebug() << "setVHSigmaPath";
rtpc.setVVSigmaPath( VVSigmaPath ); //qDebug() << "setVVSigmaPath";
rtpc.setOutEchoPath(OutEchoPath); //qDebug() << "setOutEchoPath";
qDebug() << "-------------- RTPC start---------------------------------------";
rtpc.Process(num_thread); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
qDebug() << "-------------- RTPC end---------------------------------------";
}