RasterProcessTool/Toolbox/SimulationSARTool/SimulationSAR/TBPImageAlgCls.cpp

614 lines
24 KiB
C++
Raw Normal View History

2024-11-25 10:09:24 +00:00
#include "stdafx.h"
#include "TBPImageAlgCls.h"
#include <QDateTime>
#include <QDebug>
#include <QString>
#include <cmath>
2024-11-27 05:10:40 +00:00
#include <QProgressDialog>
#include <QMessageBox>
#include "GPUTool.cuh"
#include "GPUTBPImage.cuh"
#include "ImageOperatorBase.h"
2024-11-25 10:09:24 +00:00
void CreatePixelXYZ(std::shared_ptr<EchoL0Dataset> echoL0ds, QString outPixelXYZPath)
{
2025-02-26 11:39:46 +00:00
long bandwidth = echoL0ds->getBandwidth();
double Rnear = echoL0ds->getNearRange();
double Rfar = echoL0ds->getFarRange();
double refRange = echoL0ds->getRefPhaseRange();
double dx = LIGHTSPEED / 2.0 / bandwidth; // c/2b
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵͳ
long prfcount = echoL0ds->getPluseCount();
long freqcount = echoL0ds->getPlusePoints();
Eigen::MatrixXd gt = Eigen::MatrixXd::Zero(2, 3);
gt(0, 0) = 0;
gt(0, 1) = 1;
gt(0, 2) = 0;
gt(1, 0) = 0;
gt(1, 1) = 0;
gt(1, 2) = 1;
2025-02-28 16:47:58 +00:00
gdalImage xyzRaster = CreategdalImage(outPixelXYZPath, prfcount, freqcount, 3, gt, QString(""), false, true,true,GDT_Float64);
std::shared_ptr<double> antpos = echoL0ds->getAntPos();
2025-02-26 11:39:46 +00:00
dx = (echoL0ds->getFarRange()-echoL0ds->getNearRange())/(echoL0ds->getPlusePoints()-1);
Rnear = echoL0ds->getNearRange();
2025-02-24 10:53:35 +00:00
double Rref = echoL0ds->getRefPhaseRange();
double centerInc = echoL0ds->getCenterAngle()*d2r;
2025-02-26 11:39:46 +00:00
long echocol = Memory1GB * 1.0 / 8 / 4 / prfcount * 6;
2025-02-25 05:18:19 +00:00
qDebug() << "echocol:\t " << echocol ;
2025-02-26 11:39:46 +00:00
echocol = echocol < 1 ? 1: echocol;
2025-02-26 11:39:46 +00:00
std::shared_ptr<double> Pxs((double*)mallocCUDAHost(sizeof(double)*prfcount), FreeCUDAHost);
std::shared_ptr<double> Pys((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> Pzs((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> AntDirectX((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> AntDirectY((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
std::shared_ptr<double> AntDirectZ((double*)mallocCUDAHost(sizeof(double) * prfcount), FreeCUDAHost);
2025-02-26 11:39:46 +00:00
{
std::shared_ptr<double> antpos = echoL0ds->getAntPos();
double time = 0;
double Px = 0;
double Py = 0;
double Pz = 0;
for (long i = 0; i < prfcount; i++) {
Pxs.get()[i] = antpos.get()[i * 19 + 1]; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
Pys.get()[i] = antpos.get()[i * 19 + 2];
Pzs.get()[i] = antpos.get()[i * 19 + 3];
AntDirectX.get()[i] = antpos.get()[i * 19 + 13];// zero doppler
AntDirectY.get()[i] = antpos.get()[i * 19 + 14];
AntDirectZ.get()[i] = antpos.get()[i * 19 + 15];
double NormAnt = std::sqrt(AntDirectX.get()[i] * AntDirectX.get()[i] +
AntDirectY.get()[i] * AntDirectY.get()[i] +
AntDirectZ.get()[i] * AntDirectZ.get()[i]);
AntDirectX.get()[i] = AntDirectX.get()[i] / NormAnt;
AntDirectY.get()[i] = AntDirectY.get()[i] / NormAnt;
AntDirectZ.get()[i] = AntDirectZ.get()[i] / NormAnt;// <20><>һ<EFBFBD><D2BB>
}
antpos.reset();
}
2025-02-24 10:53:35 +00:00
2025-02-26 11:39:46 +00:00
std::shared_ptr<double> d_Pxs((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_Pys((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_Pzs((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_AntDirectX((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_AntDirectY((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
std::shared_ptr<double> d_AntDirectZ((double*)mallocCUDADevice(sizeof(double) * prfcount), FreeCUDADevice);
2025-02-24 10:53:35 +00:00
2025-02-26 11:39:46 +00:00
HostToDevice(Pxs.get(), d_Pxs.get(), sizeof(double) * prfcount);
HostToDevice(Pys.get(), d_Pys.get(), sizeof(double) * prfcount);
HostToDevice(Pzs.get(), d_Pzs.get(), sizeof(double) * prfcount);
2025-02-27 10:30:29 +00:00
HostToDevice(AntDirectX.get(), d_AntDirectX.get(), sizeof(double) * prfcount);
HostToDevice(AntDirectY.get(), d_AntDirectY.get(), sizeof(double) * prfcount);
HostToDevice(AntDirectZ.get(), d_AntDirectZ.get(), sizeof(double) * prfcount);
2025-02-24 10:53:35 +00:00
2025-02-26 11:39:46 +00:00
for (long startcolidx = 0; startcolidx < freqcount; startcolidx = startcolidx + echocol) {
2025-02-24 10:53:35 +00:00
2025-02-26 11:39:46 +00:00
long tempechocol = echocol;
if (startcolidx + tempechocol >= freqcount) {
tempechocol = freqcount - startcolidx;
}
qDebug() << "\r[" << QDateTime::currentDateTime().toString("yyyy-MM-dd hh:mm:ss.zzz") << "] imgxyz :\t" << startcolidx << "\t-\t" << startcolidx + tempechocol << " / " << freqcount ;
2025-02-24 10:53:35 +00:00
2025-02-26 11:39:46 +00:00
std::shared_ptr<double> demx = readDataArr<double>(xyzRaster, 0, startcolidx, prfcount, tempechocol, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> demy = readDataArr<double>(xyzRaster, 0, startcolidx, prfcount, tempechocol, 2, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> demz = readDataArr<double>(xyzRaster, 0, startcolidx, prfcount, tempechocol, 3, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> h_demx((double*)mallocCUDAHost(sizeof(double) * prfcount*tempechocol), FreeCUDAHost);
std::shared_ptr<double> h_demy((double*)mallocCUDAHost(sizeof(double) * prfcount*tempechocol), FreeCUDAHost);
std::shared_ptr<double> h_demz((double*)mallocCUDAHost(sizeof(double) * prfcount*tempechocol), FreeCUDAHost);
#pragma omp parallel for
for (long ii = 0; ii < prfcount; ii++) {
for (long jj = 0; jj < tempechocol; jj++) {
h_demx.get()[ii*tempechocol+jj]=demx.get()[ii*tempechocol+jj];
h_demy.get()[ii*tempechocol+jj]=demy.get()[ii*tempechocol+jj];
h_demz.get()[ii*tempechocol+jj]=demz.get()[ii*tempechocol+jj];
}
}
2025-02-24 10:53:35 +00:00
2025-02-26 11:39:46 +00:00
std::shared_ptr<double> d_demx((double*)mallocCUDADevice(sizeof(double) * prfcount * tempechocol), FreeCUDADevice);
std::shared_ptr<double> d_demy((double*)mallocCUDADevice(sizeof(double) * prfcount * tempechocol), FreeCUDADevice);
std::shared_ptr<double> d_demz((double*)mallocCUDADevice(sizeof(double) * prfcount * tempechocol), FreeCUDADevice);
2025-02-24 10:53:35 +00:00
2025-02-26 11:39:46 +00:00
HostToDevice(h_demx.get(), d_demx.get(), sizeof(double) * prfcount * tempechocol);
HostToDevice(h_demy.get(), d_demy.get(), sizeof(double) * prfcount * tempechocol);
HostToDevice(h_demz.get(), d_demz.get(), sizeof(double) * prfcount * tempechocol);
2025-02-24 10:53:35 +00:00
2025-02-26 11:39:46 +00:00
TIMEBPCreateImageGrid(
d_Pxs.get(), d_Pys.get(), d_Pzs.get(),
d_AntDirectX.get(), d_AntDirectY.get(), d_AntDirectZ.get(),
d_demx.get(), d_demy.get(), d_demz.get(),
2025-02-28 16:47:58 +00:00
prfcount, tempechocol, 1000,
2025-03-03 03:18:50 +00:00
Rnear+dx* startcolidx, dx, refRange // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>޶<EFBFBD>
2025-02-26 11:39:46 +00:00
);
2025-02-27 08:16:10 +00:00
DeviceToHost(h_demx.get(), d_demx.get(), sizeof(double) * prfcount * tempechocol);
DeviceToHost(h_demy.get(), d_demy.get(), sizeof(double) * prfcount * tempechocol);
DeviceToHost(h_demz.get(), d_demz.get(), sizeof(double) * prfcount * tempechocol);
#pragma omp parallel for
for (long ii = 0; ii < prfcount; ii++) {
for (long jj = 0; jj < tempechocol; jj++) {
demx.get()[ii * tempechocol + jj]=h_demx.get()[ii * tempechocol + jj] ;
demy.get()[ii * tempechocol + jj]=h_demy.get()[ii * tempechocol + jj] ;
demz.get()[ii * tempechocol + jj]=h_demz.get()[ii * tempechocol + jj] ;
}
}
2025-02-26 11:39:46 +00:00
xyzRaster.saveImage(demx, 0, startcolidx,prfcount,tempechocol, 1);
xyzRaster.saveImage(demy, 0, startcolidx,prfcount,tempechocol, 2);
xyzRaster.saveImage(demz, 0, startcolidx,prfcount,tempechocol, 3);
}
2025-02-25 08:25:18 +00:00
}
2024-11-25 10:09:24 +00:00
void TBPImageProcess(QString echofile, QString outImageFolder, QString imagePlanePath,long num_thread)
{
std::shared_ptr<EchoL0Dataset> echoL0ds(new EchoL0Dataset);
echoL0ds->Open(echofile);
std::shared_ptr< SARSimulationImageL1Dataset> imagL1(new SARSimulationImageL1Dataset);
imagL1->setCenterAngle(echoL0ds->getCenterAngle());
imagL1->setCenterFreq(echoL0ds->getCenterFreq());
imagL1->setNearRange(echoL0ds->getNearRange());
imagL1->setRefRange((echoL0ds->getNearRange() + echoL0ds->getFarRange()) / 2);
imagL1->setFarRange(echoL0ds->getFarRange());
imagL1->setFs(echoL0ds->getFs());
imagL1->setLookSide(echoL0ds->getLookSide());
2025-02-27 10:30:29 +00:00
2024-11-25 10:09:24 +00:00
imagL1->OpenOrNew(outImageFolder, echoL0ds->getSimulationTaskName(), echoL0ds->getPluseCount(), echoL0ds->getPlusePoints());
TBPImageAlgCls TBPimag;
TBPimag.setEchoL0(echoL0ds);
TBPimag.setImageL1(imagL1);
TBPimag.setImagePlanePath(imagePlanePath);
TBPimag.Process(num_thread);
}
2024-11-25 10:09:24 +00:00
void TBPImageAlgCls::setImagePlanePath(QString INimagePlanePath)
{
this->imagePlanePath = INimagePlanePath;
}
QString TBPImageAlgCls::getImagePlanePath()
{
return this->imagePlanePath;
}
void TBPImageAlgCls::setEchoL0(std::shared_ptr<EchoL0Dataset> inL0ds)
{
this->L0ds = inL0ds;
}
void TBPImageAlgCls::setImageL1(std::shared_ptr<SARSimulationImageL1Dataset> inL1ds)
{
this->L1ds = inL1ds;
}
std::shared_ptr<EchoL0Dataset> TBPImageAlgCls::getEchoL1()
{
return this->L0ds;
}
std::shared_ptr<SARSimulationImageL1Dataset> TBPImageAlgCls::getImageL0()
{
return this->L1ds;
}
ErrorCode TBPImageAlgCls::Process(long num_thread)
{
2025-02-26 11:39:46 +00:00
qDebug() << u8"<EFBFBD><EFBFBD>ʼ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>";
2025-02-28 16:47:58 +00:00
2025-02-26 11:39:46 +00:00
qDebug() << u8"<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ƽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>XYZ";
2024-12-25 10:47:02 +00:00
QString outRasterXYZ = JoinPath(this->L1ds->getoutFolderPath(), this->L0ds->getSimulationTaskName() + "_xyz.bin");
CreatePixelXYZ(this->L0ds, outRasterXYZ);
2025-03-03 03:44:03 +00:00
return this->ProcessWithGridNet(num_thread, outRasterXYZ);
2025-03-03 03:44:03 +00:00
}
2025-02-26 11:39:46 +00:00
2025-03-03 03:44:03 +00:00
ErrorCode TBPImageAlgCls::ProcessWithGridNet(long num_thread,QString xyzRasterPath)
{
this->outRasterXYZPath = xyzRasterPath;
qDebug() << u8"Ƶ<EFBFBD><EFBFBD><EFBFBD>ز<EFBFBD>-> ʱ<><CAB1><EFBFBD>ز<EFBFBD>";
2025-02-28 16:47:58 +00:00
this->TimeEchoDataPath = JoinPath(this->L1ds->getoutFolderPath(), this->L0ds->getSimulationTaskName() + "_Timeecho.bin");
this->EchoFreqToTime();
// <20><>ʼ<EFBFBD><CABC>Raster
qDebug() << u8"<EFBFBD><EFBFBD>ʼ<EFBFBD><EFBFBD>Ӱ<EFBFBD><EFBFBD>";
long imageheight = this->L1ds->getrowCount();
long imagewidth = this->L1ds->getcolCount();
2025-03-03 03:44:03 +00:00
long blokline = Memory1GB / 8 / 4 / imageheight * 32;
blokline = blokline < 1000 ? 1000 : blokline;
long startline = 0;
for (startline = 0; startline < imageheight; startline = startline + blokline) {
long templine = blokline;
if (startline + templine >= imageheight) {
templine = imageheight - startline;
}
2025-03-03 03:44:03 +00:00
qDebug() << "\r[" << QDateTime::currentDateTime().toString("yyyy-MM-dd hh:mm:ss.zzz") << "] imgxyz :\t" << startline << "\t-\t" << startline + templine << " / " << imageheight;
std::shared_ptr<std::complex<double>> imageRaster = this->L1ds->getImageRaster(startline, templine);
for (long i = 0; i < templine; i++) {
for (long j = 0; j < imagewidth; j++) {
2025-03-03 03:44:03 +00:00
imageRaster.get()[i * imagewidth + j] = std::complex<double>(0, 0);
}
}
2025-03-03 03:44:03 +00:00
this->L1ds->saveImageRaster(imageRaster, startline, templine);
}
2025-02-26 11:39:46 +00:00
2025-02-26 01:45:43 +00:00
qDebug() << u8"Ƶ<EFBFBD><EFBFBD><EFBFBD>ز<EFBFBD>-> ʱ<><CAB1><EFBFBD>ز<EFBFBD> <20><><EFBFBD><EFBFBD>";
2025-03-03 03:18:50 +00:00
if (GPURUN) {
return this->ProcessGPU();
}
else {
2025-03-03 03:44:03 +00:00
QMessageBox::information(nullptr, u8"<EFBFBD><EFBFBD>ʾ", u8"Ŀǰֻ֧<EFBFBD><EFBFBD><EFBFBD>Կ<EFBFBD>");
2025-03-03 03:18:50 +00:00
return ErrorCode::FAIL;
}
2025-02-27 10:30:29 +00:00
return ErrorCode::SUCCESS;
2025-03-03 03:44:03 +00:00
}
2025-03-03 03:44:03 +00:00
ErrorCode TBPImageAlgCls::ProcessGPU()
{
// <20><><EFBFBD>ò<EFBFBD><C3B2><EFBFBD>
long rowCount = this->L1ds->getrowCount();
long colCount = this->L1ds->getcolCount();
long pixelCount = rowCount * colCount;
long PRFCount = this->L0ds->getPluseCount();
long PlusePoints = this->L0ds->getPlusePoints();
2025-02-25 05:18:19 +00:00
long bandwidth = this->L0ds->getBandwidth();
double Rnear = this->L1ds->getNearRange();
double Rfar = this->L1ds->getFarRange();
double refRange = this->L0ds->getRefPhaseRange();
double dx = LIGHTSPEED / 2.0 / bandwidth; // c/2b
Rfar = Rnear + dx * (PlusePoints - 1); // <20><><EFBFBD><EFBFBD>б<EFBFBD><D0B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
float freq = this->L1ds->getCenterFreq();
double factorj = freq * 4 * M_PI / LIGHTSPEED ;
qDebug() << "------------------------------------------------";
qDebug() << "TBP params:";
qDebug() << "Rnear:\t" << Rnear;
qDebug() << "Rfar:\t" << Rfar;
2025-02-24 10:53:35 +00:00
qDebug() << "refRange:\t" << this->getEchoL1()->getRefPhaseRange();
2025-02-25 05:18:19 +00:00
qDebug() << "dx:\t" << dx;
qDebug() << "freq:\t" << freq;
qDebug() << "rowCount:\t" << rowCount;
qDebug() << "colCount:\t" << colCount;
qDebug() << "PRFCount:\t" << PRFCount;
qDebug() << "PlusePoints:\t" << PlusePoints;
2025-02-25 08:25:18 +00:00
qDebug() << "bandwidth:\t" << bandwidth;
2025-02-25 05:18:19 +00:00
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʼ<EFBFBD><CABC>λ
double deltaF = bandwidth / (PlusePoints - 1);
double startfreq = freq - bandwidth / 2;
double startlamda = LIGHTSPEED / startfreq;
2025-02-25 08:25:18 +00:00
qDebug() << "deltaF:\t" << deltaF;
2025-02-25 05:18:19 +00:00
2025-02-26 11:39:46 +00:00
std::shared_ptr<double> Pxs (new double[this->L0ds->getPluseCount()],delArrPtr);
std::shared_ptr<double> Pys (new double[this->L0ds->getPluseCount()],delArrPtr);
std::shared_ptr<double> Pzs (new double[this->L0ds->getPluseCount()],delArrPtr);
{
std::shared_ptr<double> antpos = this->L0ds->getAntPos();
double time = 0;
double Px = 0;
double Py = 0;
double Pz = 0;
for (long i = 0; i < rowCount; i++) {
time = antpos.get()[i *19 + 0];
Px = antpos.get()[i *19 + 1];
Py = antpos.get()[i *19 + 2];
Pz = antpos.get()[i *19 + 3];
Pxs.get()[i] = Px;
Pys.get()[i] = Py;
Pzs.get()[i] = Pz;
}
antpos.reset();
}
2025-02-25 08:25:18 +00:00
2025-02-25 05:18:19 +00:00
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ļ<EFBFBD><C4BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֱ<EFBFBD><D6B1><EFBFBD>
2025-02-25 08:25:18 +00:00
double dr = sqrt(pow(Pxs.get()[2]- Pxs.get()[1],2)+pow(Pys.get()[2] - Pys.get()[1],2)+pow(Pzs.get()[2] - Pzs.get()[1],2));
2025-02-25 05:18:19 +00:00
qDebug() << "------- resolution ----------------------------------";
qDebug() << "Range Resolution (m):\t" << dx ;
qDebug() << "Cross Resolution (m):\t" << dr;
2025-02-25 07:24:45 +00:00
qDebug() << "Range Range (m):\t" << dx*PlusePoints;
qDebug() << "Cross Range (m):\t" << dr*PRFCount;
2025-02-25 05:18:19 +00:00
qDebug() << "start Freq (Hz):\t" << startfreq;
qDebug() << "start lamda (m):\t" << startlamda;
qDebug() << "rowCount:\t" << rowCount;
qDebug() << "colCount:\t" << colCount;
qDebug() << "PRFCount:\t" << PRFCount;
qDebug() << "PlusePoints:\t" << PlusePoints;
qDebug() << "Rnear:\t" << Rnear;
qDebug() << "Rfar:\t" << Rfar;
qDebug() << "refRange:\t" << refRange;
// <20><>λ<EFBFBD><CEBB><EFBFBD>ֱ<EFBFBD><D6B1><EFBFBD>
2025-02-25 05:18:19 +00:00
long echoBlockline = Memory1GB / 8 / 2 / PlusePoints * 2; //2GB
echoBlockline = echoBlockline < 1 ? 1 : echoBlockline;
2025-02-25 05:18:19 +00:00
long imageBlockline = Memory1GB / 8 / 2 / colCount * 2; //2GB
imageBlockline = imageBlockline < 1 ? 1 : imageBlockline;
gdalImage imageXYZ(this->outRasterXYZPath);
2025-02-27 10:30:29 +00:00
gdalImageComplex imagetimeimg(this->TimeEchoDataPath);
long startimgrowid = 0;
for (startimgrowid = 0; startimgrowid < rowCount; startimgrowid = startimgrowid + imageBlockline) {
long tempimgBlockline = imageBlockline;
if (startimgrowid + imageBlockline >= rowCount) {
tempimgBlockline = rowCount - startimgrowid;
}
2025-03-03 03:18:50 +00:00
qDebug() << "\r image create Row Range :\t"<<QString("[%1]").arg(startimgrowid*100.0/ rowCount)<< startimgrowid << "\t-\t" << startimgrowid + tempimgBlockline << "\t/\t" << rowCount;
// <20><>ȡ<EFBFBD>ֲ<EFBFBD>pixel x,y,z
2025-02-25 05:18:19 +00:00
std::shared_ptr<double> img_x = readDataArr<double>(imageXYZ,startimgrowid,0,tempimgBlockline,colCount,1,GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> img_y = readDataArr<double>(imageXYZ,startimgrowid,0,tempimgBlockline,colCount,2,GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<double> img_z = readDataArr<double>(imageXYZ,startimgrowid,0,tempimgBlockline,colCount,3,GDALREADARRCOPYMETHOD::VARIABLEMETHOD);
std::shared_ptr<std::complex<double>> imgArr = this->L1ds->getImageRaster(startimgrowid, tempimgBlockline);
// <20><>ȡ<EFBFBD>ز<EFBFBD>
long startechoid = 0;
2025-02-27 10:30:29 +00:00
long iffeechoLen = PlusePoints;
for (long startechoid = 0; startechoid < PRFCount; startechoid = startechoid + echoBlockline) {
long tempechoBlockline = echoBlockline;
if (startechoid + tempechoBlockline >= PRFCount) {
tempechoBlockline = PRFCount - startechoid;
}
2025-03-03 03:18:50 +00:00
std::shared_ptr<std::complex<double>> echoArr = readDataArrComplex < std::complex<double>>(imagetimeimg,startechoid,long(0), tempechoBlockline, iffeechoLen, 1, GDALREADARRCOPYMETHOD::VARIABLEMETHOD);//; this->L0ds->getEchoArr(startechoid, tempechoBlockline);
2025-02-26 11:39:46 +00:00
std::shared_ptr<double> antpx(new double[tempechoBlockline],delArrPtr);
std::shared_ptr<double> antpy(new double[tempechoBlockline], delArrPtr);
std::shared_ptr<double> antpz(new double[tempechoBlockline], delArrPtr);
2025-03-03 03:18:50 +00:00
for (long anti = 0; anti < tempechoBlockline; anti++) { // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
antpx.get()[anti] = Pxs.get()[anti + startechoid];
antpy.get()[anti] = Pys.get()[anti + startechoid];
antpz.get()[anti] = Pzs.get()[anti + startechoid];
}
2025-03-03 03:18:50 +00:00
2025-02-25 05:18:19 +00:00
TBPImageGPUAlg2(
2025-03-03 03:18:50 +00:00
antpx, antpy, antpz, // <20><><EFBFBD><EFBFBD>
img_x, img_y, img_z, // ͼ<><CDBC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
echoArr, // <20>ز<EFBFBD>
imgArr, // ͼ<><CDBC>
2025-02-25 05:18:19 +00:00
startfreq, dx,
Rnear, Rfar, refRange,
tempimgBlockline, colCount,
2025-03-03 03:18:50 +00:00
tempechoBlockline, PlusePoints
2024-12-29 04:05:41 +00:00
);
2025-02-25 07:24:45 +00:00
qDebug() << QString(" image block PRF:[%1] \t").arg((startechoid + tempechoBlockline) * 100.0 / PRFCount)
<< startechoid << "\t-\t" << startechoid + tempechoBlockline;
}
this->L1ds->saveImageRaster(imgArr, startimgrowid, tempimgBlockline);
}
qDebug() << "\r[" << QDateTime::currentDateTime().toString("yyyy-MM-dd hh:mm:ss.zzz") << "] image writing:\t" << this->L1ds->getxmlFilePath();
2024-12-24 08:18:14 +00:00
this->L1ds->saveToXml();
return ErrorCode::SUCCESS;
}
2025-02-25 05:18:19 +00:00
void TBPImageGPUAlg2(std::shared_ptr<double> antPx, std::shared_ptr<double> antPy, std::shared_ptr<double> antPz,
std::shared_ptr<double> img_x, std::shared_ptr<double> img_y, std::shared_ptr<double> img_z,
std::shared_ptr<std::complex<double>> echoArr,
2025-02-25 05:18:19 +00:00
std::shared_ptr<std::complex<double>> img_arr,
double freq, double dx, double Rnear, double Rfar, double refRange,
long rowcount, long colcount,
2025-03-03 03:18:50 +00:00
long prfcount, long freqcount
)
{
2024-12-24 08:18:14 +00:00
2025-03-03 03:18:50 +00:00
// <20><><EFBFBD><EFBFBD>
std::shared_ptr<double> h_antPx ((double*)mallocCUDAHost(sizeof(double) * prfcount),FreeCUDAHost);
std::shared_ptr<double> h_antPy ((double*)mallocCUDAHost(sizeof(double) * prfcount),FreeCUDAHost);
2025-02-25 05:18:19 +00:00
std::shared_ptr<double> h_antPz ((double*)mallocCUDAHost(sizeof(double) * prfcount),FreeCUDAHost);
2025-02-25 05:18:19 +00:00
std::shared_ptr<double> d_antPx ((double*)mallocCUDADevice(sizeof(double) * prfcount),FreeCUDADevice);
std::shared_ptr<double> d_antPy ((double*)mallocCUDADevice(sizeof(double) * prfcount),FreeCUDADevice);
std::shared_ptr<double> d_antPz ((double*)mallocCUDADevice(sizeof(double) * prfcount),FreeCUDADevice);
2025-03-03 03:18:50 +00:00
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
2025-02-25 05:18:19 +00:00
std::shared_ptr<double> h_imgx((double*)mallocCUDAHost(sizeof(double) * rowcount * colcount),FreeCUDAHost);
std::shared_ptr<double> h_imgy((double*)mallocCUDAHost(sizeof(double) * rowcount * colcount),FreeCUDAHost);
std::shared_ptr<double> h_imgz((double*)mallocCUDAHost(sizeof(double) * rowcount * colcount),FreeCUDAHost);
2025-02-25 05:18:19 +00:00
std::shared_ptr<double> d_imgx ((double*)mallocCUDADevice(sizeof(double) * rowcount * colcount),FreeCUDADevice);
std::shared_ptr<double> d_imgy ((double*)mallocCUDADevice(sizeof(double) * rowcount * colcount),FreeCUDADevice);
std::shared_ptr<double> d_imgz ((double*)mallocCUDADevice(sizeof(double) * rowcount * colcount),FreeCUDADevice);
2025-03-03 03:18:50 +00:00
// <20>ز<EFBFBD><D8B2><EFBFBD>Χ
std::shared_ptr<cuComplex> h_echoArr((cuComplex*)mallocCUDAHost(sizeof(cuComplex) * prfcount * freqcount), FreeCUDAHost);
std::shared_ptr<cuComplex> d_echoArr((cuComplex*)mallocCUDADevice(sizeof(cuComplex) * prfcount * freqcount), FreeCUDADevice);
2025-02-25 05:18:19 +00:00
2025-03-03 03:18:50 +00:00
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
std::shared_ptr<cuComplex> h_imgArr((cuComplex*)mallocCUDAHost(sizeof(cuComplex) * rowcount * colcount), FreeCUDAHost);
std::shared_ptr<cuComplex> d_imgArr((cuComplex*)mallocCUDADevice(sizeof(cuComplex) * rowcount * colcount), FreeCUDADevice);
#pragma omp parallel for
for (long i = 0; i < prfcount; i++) {
for (long j = 0; j < freqcount; j++) {
h_echoArr.get()[i * freqcount + j] = make_cuComplex(echoArr.get()[i * freqcount + j].real(),
echoArr.get()[i * freqcount + j].imag());
}
}
// <20><><EFBFBD><EFBFBD>λ<EFBFBD><CEBB>
for (long i = 0; i < prfcount; i++) {
2025-02-25 05:18:19 +00:00
h_antPx.get()[i] = antPx.get()[i];
h_antPy.get()[i] = antPy.get()[i];
h_antPz.get()[i] = antPz.get()[i];
}
2025-02-25 06:47:54 +00:00
#pragma omp parallel for
for (long i = 0; i < rowcount; i++) {
for (long j = 0; j < colcount; j++) {
2025-02-25 06:47:54 +00:00
h_imgx.get()[i * colcount + j] = img_x.get()[i * colcount + j];
h_imgy.get()[i * colcount + j] = img_y.get()[i * colcount + j];
h_imgz.get()[i * colcount + j] = img_z.get()[i * colcount + j];
}
}
2025-02-25 06:47:54 +00:00
#pragma omp parallel for
2025-02-25 05:18:19 +00:00
for (long i = 0; i < rowcount; i++) {
for (long j = 0; j < colcount; j++) {
2025-02-25 06:47:54 +00:00
h_imgArr.get()[i * colcount + j].x = img_arr.get()[i * colcount + j].real();
h_imgArr.get()[i * colcount + j].y = img_arr.get()[i * colcount + j].imag();
2025-02-25 05:18:19 +00:00
}
2024-12-29 06:40:02 +00:00
}
2025-02-25 05:18:19 +00:00
HostToDevice(h_imgArr.get(), d_imgArr.get(), sizeof(cuComplex) * rowcount * colcount);
2025-03-03 03:18:50 +00:00
HostToDevice(h_echoArr.get(), d_echoArr.get(), sizeof(cuComplex) * prfcount * freqcount);
HostToDevice(h_antPx.get(), d_antPx.get(), sizeof(double) * prfcount);
HostToDevice(h_antPy.get(), d_antPy.get(), sizeof(double) * prfcount);
HostToDevice(h_antPz.get(), d_antPz.get(), sizeof(double) * prfcount);
HostToDevice(h_imgx.get(), d_imgx.get(), sizeof(double) * rowcount * colcount);
HostToDevice(h_imgy.get(), d_imgy.get(), sizeof(double) * rowcount * colcount);
HostToDevice(h_imgz.get(), d_imgz.get(), sizeof(double) * rowcount * colcount);
2024-12-29 04:05:41 +00:00
2025-02-25 05:18:19 +00:00
// ֱ<><D6B1>ʹ<EFBFBD><CAB9>
double startlamda = LIGHTSPEED / freq;
TimeBPImage(
d_antPx.get(), d_antPy.get(), d_antPz.get(),
d_imgx.get(), d_imgy.get(), d_imgz.get(),
2025-03-03 03:18:50 +00:00
d_echoArr.get(), prfcount, freqcount,
2025-02-25 05:18:19 +00:00
d_imgArr.get(), rowcount, colcount,
2025-03-03 03:18:50 +00:00
startlamda, Rnear, dx, refRange,Rfar
2025-02-25 05:18:19 +00:00
);
2024-12-28 08:08:44 +00:00
2025-02-25 05:18:19 +00:00
// Device -> Host
DeviceToHost(h_imgArr.get(), d_imgArr.get(), sizeof(cuComplex)* rowcount* colcount);
2024-12-28 08:08:44 +00:00
2025-02-25 06:47:54 +00:00
#pragma omp parallel for
2025-02-25 05:18:19 +00:00
for (long i = 0; i < rowcount; i++) {
for (long j = 0; j < colcount; j++) {
2025-02-25 06:47:54 +00:00
img_arr.get()[i * colcount + j] = std::complex<double>(h_imgArr.get()[i * colcount + j].x, h_imgArr.get()[i * colcount + j].y);
2024-12-28 08:08:44 +00:00
}
}
2024-12-28 08:08:44 +00:00
2025-02-25 05:18:19 +00:00
2024-12-28 08:08:44 +00:00
2025-02-25 05:18:19 +00:00
}
2024-12-28 07:25:56 +00:00
void TBPImageAlgCls::setGPU(bool flag)
{
this->GPURUN = flag;
}
bool TBPImageAlgCls::getGPU( )
{
return this->GPURUN;
}
2025-03-03 03:18:50 +00:00
void TBPImageAlgCls::EchoFreqToTime()
2024-11-25 10:09:24 +00:00
{
2025-03-03 03:18:50 +00:00
// <20><>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD>
2024-11-25 10:09:24 +00:00
long PRFCount = this->L0ds->getPluseCount();
2025-03-03 03:18:50 +00:00
long inColCount = this->L0ds->getPlusePoints();
long outColCount = inColCount;// nextpow2(inColCount);
this->TimeEchoRowCount = PRFCount;
this->TimeEchoColCount = outColCount;
qDebug() << "IFFT : " << this->TimeEchoDataPath;
qDebug() << "PRF Count:\t" << PRFCount;
qDebug() << "inColCount:\t" << inColCount;
qDebug() << "outColCount:\t" << outColCount;
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ļ<EFBFBD>
gdalImageComplex outTimeEchoImg = CreategdalImageComplexNoProj(this->TimeEchoDataPath, this->TimeEchoRowCount, this->TimeEchoColCount, 1);
2024-11-25 10:09:24 +00:00
2025-03-03 03:18:50 +00:00
// <20>ֿ<EFBFBD>
long echoBlockline = Memory1GB / 8 / 2 / outColCount * 3; //1GB
echoBlockline = echoBlockline < 1 ? 1 : echoBlockline;
2024-11-25 10:09:24 +00:00
2025-03-03 03:18:50 +00:00
long startechoid = 0;
for (long startechoid = 0; startechoid < PRFCount; startechoid = startechoid + echoBlockline) {
2024-11-25 10:09:24 +00:00
2025-03-03 03:18:50 +00:00
long tempechoBlockline = echoBlockline;
if (startechoid + tempechoBlockline >= PRFCount) {
tempechoBlockline = PRFCount - startechoid;
2024-11-25 10:09:24 +00:00
}
2025-03-03 03:18:50 +00:00
std::shared_ptr<std::complex<double>> echoArr = this->L0ds->getEchoArr(startechoid, tempechoBlockline);
std::shared_ptr<std::complex<double>> IFFTArr = outTimeEchoImg.getDataComplexSharePtr(startechoid, 0, tempechoBlockline, outColCount, 1);
2024-11-25 10:09:24 +00:00
2025-03-03 03:18:50 +00:00
std::shared_ptr<cuComplex> host_echoArr((cuComplex*)mallocCUDAHost(sizeof(cuComplex) * tempechoBlockline * outColCount), FreeCUDAHost);
std::shared_ptr<cuComplex> host_IFFTechoArr((cuComplex*)mallocCUDAHost(sizeof(cuComplex) * tempechoBlockline * outColCount), FreeCUDAHost);
2024-11-25 10:09:24 +00:00
2025-03-03 03:18:50 +00:00
memset(host_echoArr.get(), 0, sizeof(cuComplex) * tempechoBlockline * outColCount);
#pragma omp parallel for
for (long ii = 0; ii < tempechoBlockline; ii++) {
for (long jj = 0; jj < inColCount; jj++) {
host_echoArr.get()[ii * outColCount + jj] = make_cuComplex(echoArr.get()[ii * inColCount + jj].real(), echoArr.get()[ii * inColCount + jj].imag());
2024-11-25 10:09:24 +00:00
}
}
2025-03-03 03:18:50 +00:00
#pragma omp parallel for
for (long ii = 0; ii < tempechoBlockline * outColCount; ii++) {
host_IFFTechoArr.get()[ii] = make_cuComplex(0, 0);
2024-11-25 10:09:24 +00:00
}
2025-03-03 03:18:50 +00:00
std::shared_ptr<cuComplex> device_echoArr((cuComplex*)mallocCUDADevice(sizeof(cuComplex) * tempechoBlockline * inColCount), FreeCUDADevice);
std::shared_ptr<cuComplex> device_IFFTechoArr((cuComplex*)mallocCUDADevice(sizeof(cuComplex) * tempechoBlockline * outColCount), FreeCUDADevice);
2024-11-25 10:09:24 +00:00
2025-03-03 03:18:50 +00:00
HostToDevice(host_echoArr.get(), device_echoArr.get(), sizeof(cuComplex) * tempechoBlockline * inColCount);
HostToDevice(host_IFFTechoArr.get(), device_IFFTechoArr.get(), sizeof(cuComplex) * tempechoBlockline * outColCount);
CUDAIFFT(device_echoArr.get(), device_IFFTechoArr.get(), tempechoBlockline, outColCount, outColCount);
2024-11-25 10:09:24 +00:00
2025-03-03 03:18:50 +00:00
FFTShift1D(device_IFFTechoArr.get(), tempechoBlockline, outColCount);
DeviceToHost(host_IFFTechoArr.get(), device_IFFTechoArr.get(), sizeof(cuComplex) * tempechoBlockline * outColCount);
2024-11-25 10:09:24 +00:00
#pragma omp parallel for
2025-03-03 03:18:50 +00:00
for (long ii = 0; ii < tempechoBlockline; ii++) {
for (long jj = 0; jj < outColCount; jj++) {
IFFTArr.get()[ii * outColCount + jj] = std::complex<double>(host_IFFTechoArr.get()[ii * outColCount + jj].x, host_IFFTechoArr.get()[ii * outColCount + jj].y);
//IFFTArr.get()[ii * outColCount + jj] = std::complex<double>(host_echoArr.get()[ii * outColCount + jj].x, host_echoArr.get()[ii * outColCount + jj].y);
2024-11-25 10:09:24 +00:00
}
}
2025-03-03 03:18:50 +00:00
outTimeEchoImg.saveImage(IFFTArr, startechoid, 0, tempechoBlockline, outColCount, 1);
qDebug() << QString(" image block PRF:[%1] \t").arg((startechoid + tempechoBlockline) * 100.0 / PRFCount)
<< startechoid << "\t-\t" << startechoid + tempechoBlockline;
2024-11-25 10:09:24 +00:00
}
2025-03-03 03:18:50 +00:00
return;
2024-11-25 17:51:20 +00:00
2025-03-03 03:18:50 +00:00
}