569 lines
19 KiB
Plaintext
569 lines
19 KiB
Plaintext
|
|
|
|||
|
|
|
|||
|
|
#include <iostream>
|
|||
|
|
#include <memory>
|
|||
|
|
#include <cmath>
|
|||
|
|
#include <complex>
|
|||
|
|
#include <device_launch_parameters.h>
|
|||
|
|
#include <cuda_runtime.h>
|
|||
|
|
#include <cublas_v2.h>
|
|||
|
|
#include <cuComplex.h>
|
|||
|
|
|
|||
|
|
#include "BaseConstVariable.h"
|
|||
|
|
#include "GPURTPC.cuh"
|
|||
|
|
|
|||
|
|
#ifdef __CUDANVCC___
|
|||
|
|
|
|||
|
|
|
|||
|
|
__device__ float GPU_getSigma0dB(CUDASigmaParam param, float theta) {//<2F><><EFBFBD><EFBFBD>ֵ
|
|||
|
|
float sigma= param.p1 + param.p2 * exp(-param.p3 * theta) + param.p4 * cos(param.p5 * theta + param.p6);
|
|||
|
|
return sigma;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
__device__ CUDAVectorEllipsoidal GPU_SatelliteAntDirectNormal(float RstX, float RstY, float RstZ,
|
|||
|
|
float antXaxisX, float antXaxisY, float antXaxisZ,
|
|||
|
|
float antYaxisX, float antYaxisY, float antYaxisZ,
|
|||
|
|
float antZaxisX, float antZaxisY, float antZaxisZ,
|
|||
|
|
float antDirectX, float antDirectY, float antDirectZ
|
|||
|
|
) {
|
|||
|
|
CUDAVectorEllipsoidal result{ 0,0,-1 };
|
|||
|
|
float Xst = -1 * RstX; // <20><><EFBFBD><EFBFBD> --> <20><><EFBFBD><EFBFBD>
|
|||
|
|
float Yst = -1 * RstY;
|
|||
|
|
float Zst = -1 * RstZ;
|
|||
|
|
float AntXaxisX = antXaxisX;
|
|||
|
|
float AntXaxisY = antXaxisY;
|
|||
|
|
float AntXaxisZ = antXaxisZ;
|
|||
|
|
float AntYaxisX = antYaxisX;
|
|||
|
|
float AntYaxisY = antYaxisY;
|
|||
|
|
float AntYaxisZ = antYaxisZ;
|
|||
|
|
float AntZaxisX = antZaxisX;
|
|||
|
|
float AntZaxisY = antZaxisY;
|
|||
|
|
float AntZaxisZ = antZaxisZ;
|
|||
|
|
// <20><><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵ<EFBFBD>µ<EFBFBD>ֵ
|
|||
|
|
float Xant = (Xst * (AntYaxisY * AntZaxisZ - AntYaxisZ * AntZaxisY) + Xst * (AntXaxisZ * AntZaxisY - AntXaxisY * AntZaxisZ) + Xst * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
|
|||
|
|
float Yant = (Yst * (AntYaxisZ * AntZaxisX - AntYaxisX * AntZaxisZ) + Yst * (AntXaxisX * AntZaxisZ - AntXaxisZ * AntZaxisX) + Yst * (AntYaxisX * AntXaxisZ - AntXaxisX * AntYaxisZ)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
|
|||
|
|
float Zant = (Zst * (AntYaxisX * AntZaxisY - AntYaxisY * AntZaxisX) + Zst * (AntXaxisY * AntZaxisX - AntXaxisX * AntZaxisY) + Zst * (AntXaxisX * AntYaxisY - AntYaxisX * AntXaxisY)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
|
|||
|
|
// <20><><EFBFBD><EFBFBD>theta <20><> phi
|
|||
|
|
float Norm = sqrtf(Xant * Xant + Yant * Yant + Zant * Zant); // <20><><EFBFBD><EFBFBD> pho
|
|||
|
|
float ThetaAnt = acosf(Zant / Norm); // theta <20><> Z<><5A><EFBFBD>ļн<C4BC>
|
|||
|
|
float YsinTheta = Yant / sinf(ThetaAnt);
|
|||
|
|
float PhiAnt = (YsinTheta / abs(YsinTheta)) * acosf(Xant / (Norm * sinf(ThetaAnt)));
|
|||
|
|
result.theta = ThetaAnt;
|
|||
|
|
result.phi = PhiAnt;
|
|||
|
|
result.pho = Norm;
|
|||
|
|
return result;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
__device__ float GPU_BillerInterpAntPattern(float* antpattern,
|
|||
|
|
float starttheta, float startphi, float dtheta, float dphi,
|
|||
|
|
long thetapoints, long phipoints,
|
|||
|
|
float searththeta, float searchphi) {
|
|||
|
|
float stheta = searththeta;
|
|||
|
|
float sphi = searchphi;
|
|||
|
|
if (stheta > 90) {
|
|||
|
|
return 0;
|
|||
|
|
}
|
|||
|
|
else {}
|
|||
|
|
|
|||
|
|
|
|||
|
|
float pthetaid = (stheta - starttheta) / dtheta;//
|
|||
|
|
float pphiid = (sphi - startphi) / dphi;
|
|||
|
|
|
|||
|
|
long lasttheta = floorf(pthetaid);
|
|||
|
|
long nextTheta = lasttheta + 1;
|
|||
|
|
long lastphi = floorf(pphiid);
|
|||
|
|
long nextPhi = lastphi + 1;
|
|||
|
|
|
|||
|
|
|
|||
|
|
if (lasttheta < 0 || nextTheta < 0 || lastphi < 0 || nextPhi < 0 ||
|
|||
|
|
lasttheta >= thetapoints || nextTheta >= thetapoints || lastphi >= phipoints || nextPhi >= phipoints)
|
|||
|
|
{
|
|||
|
|
return 0;
|
|||
|
|
}
|
|||
|
|
else {
|
|||
|
|
float x = stheta;
|
|||
|
|
float y = sphi;
|
|||
|
|
|
|||
|
|
float x1 = lasttheta * dtheta + starttheta;
|
|||
|
|
float x2 = nextTheta * dtheta + starttheta;
|
|||
|
|
float y1 = lastphi * dphi + startphi;
|
|||
|
|
float y2 = nextPhi * dphi + startphi;
|
|||
|
|
|
|||
|
|
float z11 = antpattern[lasttheta * phipoints + lastphi];
|
|||
|
|
float z12 = antpattern[lasttheta * phipoints + nextPhi];
|
|||
|
|
float z21 = antpattern[nextTheta * phipoints + lastphi];
|
|||
|
|
float z22 = antpattern[nextTheta * phipoints + nextPhi];
|
|||
|
|
|
|||
|
|
|
|||
|
|
//z11 = powf(10, z11 / 10); // dB-> <20><><EFBFBD><EFBFBD>
|
|||
|
|
//z12 = powf(10, z12 / 10);
|
|||
|
|
//z21 = powf(10, z21 / 10);
|
|||
|
|
//z22 = powf(10, z22 / 10);
|
|||
|
|
|
|||
|
|
float GainValue = (z11 * (x2 - x) * (y2 - y)
|
|||
|
|
+ z21 * (x - x1) * (y2 - y)
|
|||
|
|
+ z12 * (x2 - x) * (y - y1)
|
|||
|
|
+ z22 * (x - x1) * (y - y1));
|
|||
|
|
GainValue = GainValue / ((x2 - x1) * (y2 - y1));
|
|||
|
|
return GainValue;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
__device__ cuComplex GPU_calculationEcho(float sigma0, float TransAnt, float ReciveAnt,
|
|||
|
|
float localangle, float R, float slopeangle, float Pt, float lamda) {
|
|||
|
|
float amp = Pt * TransAnt * ReciveAnt;
|
|||
|
|
amp = amp * sigma0;
|
|||
|
|
amp = amp / (powf(4 * LAMP_CUDA_PI, 2) * powf(R, 4)); // <20><><EFBFBD><EFBFBD>ǿ<EFBFBD><C7BF>
|
|||
|
|
float phi = (-4 * LAMP_CUDA_PI / lamda) * R;
|
|||
|
|
cuComplex echophi = make_cuComplex(0, phi);
|
|||
|
|
cuComplex echophiexp = cuCexpf(echophi);
|
|||
|
|
cuComplex echo=make_cuComplex(echophiexp.x * amp, echophiexp.y * amp);
|
|||
|
|
return echo;
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
__global__ void CUDA_SatelliteAntDirectNormal(float* RstX, float* RstY, float* RstZ,
|
|||
|
|
float antXaxisX, float antXaxisY, float antXaxisZ,
|
|||
|
|
float antYaxisX, float antYaxisY, float antYaxisZ,
|
|||
|
|
float antZaxisX, float antZaxisY, float antZaxisZ,
|
|||
|
|
float antDirectX, float antDirectY, float antDirectZ,
|
|||
|
|
float* thetaAnt, float* phiAnt
|
|||
|
|
, long len) {
|
|||
|
|
long idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|||
|
|
if (idx < len) {
|
|||
|
|
float Xst = -1 * RstX[idx]; // <20><><EFBFBD><EFBFBD> --> <20><><EFBFBD><EFBFBD>
|
|||
|
|
float Yst = -1 * RstY[idx];
|
|||
|
|
float Zst = -1 * RstZ[idx];
|
|||
|
|
float AntXaxisX = antXaxisX;
|
|||
|
|
float AntXaxisY = antXaxisY;
|
|||
|
|
float AntXaxisZ = antXaxisZ;
|
|||
|
|
float AntYaxisX = antYaxisX;
|
|||
|
|
float AntYaxisY = antYaxisY;
|
|||
|
|
float AntYaxisZ = antYaxisZ;
|
|||
|
|
float AntZaxisX = antZaxisX;
|
|||
|
|
float AntZaxisY = antZaxisY;
|
|||
|
|
float AntZaxisZ = antZaxisZ;
|
|||
|
|
|
|||
|
|
// <20><>һ<EFBFBD><D2BB>
|
|||
|
|
float RstNorm = sqrtf(Xst * Xst + Yst * Yst + Zst * Zst);
|
|||
|
|
float AntXaxisNorm = sqrtf(AntXaxisX * AntXaxisX + AntXaxisY * AntXaxisY + AntXaxisZ * AntXaxisZ);
|
|||
|
|
float AntYaxisNorm = sqrtf(AntYaxisX * AntYaxisX + AntYaxisY * AntYaxisY + AntYaxisZ * AntYaxisZ);
|
|||
|
|
float AntZaxisNorm = sqrtf(AntZaxisX * AntZaxisX + AntZaxisY * AntZaxisY + AntZaxisZ * AntZaxisZ);
|
|||
|
|
|
|||
|
|
|
|||
|
|
float Rx = Xst / RstNorm;
|
|||
|
|
float Ry = Yst / RstNorm;
|
|||
|
|
float Rz = Zst / RstNorm;
|
|||
|
|
float Xx = AntXaxisX / AntXaxisNorm;
|
|||
|
|
float Xy = AntXaxisY / AntXaxisNorm;
|
|||
|
|
float Xz = AntXaxisZ / AntXaxisNorm;
|
|||
|
|
float Yx = AntYaxisX / AntYaxisNorm;
|
|||
|
|
float Yy = AntYaxisY / AntYaxisNorm;
|
|||
|
|
float Yz = AntYaxisZ / AntYaxisNorm;
|
|||
|
|
float Zx = AntZaxisX / AntZaxisNorm;
|
|||
|
|
float Zy = AntZaxisY / AntZaxisNorm;
|
|||
|
|
float Zz = AntZaxisZ / AntZaxisNorm;
|
|||
|
|
|
|||
|
|
float Xant = (Rx * Yy * Zz - Rx * Yz * Zy - Ry * Yx * Zz + Ry * Yz * Zx + Rz * Yx * Zy - Rz * Yy * Zx) / (Xx * Yy * Zz - Xx * Yz * Zy - Xy * Yx * Zz + Xy * Yz * Zx + Xz * Yx * Zy - Xz * Yy * Zx);
|
|||
|
|
float Yant = -(Rx * Xy * Zz - Rx * Xz * Zy - Ry * Xx * Zz + Ry * Xz * Zx + Rz * Xx * Zy - Rz * Xy * Zx) / (Xx * Yy * Zz - Xx * Yz * Zy - Xy * Yx * Zz + Xy * Yz * Zx + Xz * Yx * Zy - Xz * Yy * Zx);
|
|||
|
|
float Zant = (Rx * Xy * Yz - Rx * Xz * Yy - Ry * Xx * Yz + Ry * Xz * Yx + Rz * Xx * Yy - Rz * Xy * Yx) / (Xx * Yy * Zz - Xx * Yz * Zy - Xy * Yx * Zz + Xy * Yz * Zx + Xz * Yx * Zy - Xz * Yy * Zx);
|
|||
|
|
|
|||
|
|
|
|||
|
|
// <20><><EFBFBD><EFBFBD>theta <20><> phi
|
|||
|
|
float Norm = sqrtf(Xant * Xant + Yant * Yant + Zant * Zant); // <20><><EFBFBD><EFBFBD> pho
|
|||
|
|
float ThetaAnt = acosf(Zant / Norm); // theta <20><> Z<><5A><EFBFBD>ļн<C4BC>
|
|||
|
|
float PhiAnt = atanf(Yant / Xant); // -pi/2 ~pi/2
|
|||
|
|
|
|||
|
|
|
|||
|
|
if (abs(Yant) < PRECISIONTOLERANCE) { // X<><58><EFBFBD><EFBFBD>
|
|||
|
|
PhiAnt = 0;
|
|||
|
|
}
|
|||
|
|
else if (abs(Xant) < PRECISIONTOLERANCE) { // Y<><59><EFBFBD>ϣ<EFBFBD>ԭ<EFBFBD><D4AD>
|
|||
|
|
if (Yant > 0) {
|
|||
|
|
PhiAnt = PI / 2;
|
|||
|
|
}
|
|||
|
|
else {
|
|||
|
|
PhiAnt = -PI / 2;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
else if (Xant < 0) {
|
|||
|
|
if (Yant > 0) {
|
|||
|
|
PhiAnt = PI + PhiAnt;
|
|||
|
|
}
|
|||
|
|
else {
|
|||
|
|
PhiAnt = -PI+PhiAnt ;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
else { // Xant>0 X <20><><EFBFBD><EFBFBD>
|
|||
|
|
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
if (isnan(PhiAnt)) {
|
|||
|
|
printf("V=[%f,%f,%f];norm=%f;thetaAnt=%f;phiAnt=%f;\n", Xant, Yant, Zant,Norm, ThetaAnt, PhiAnt);
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
//if (abs(ThetaAnt - 0) < PRECISIONTOLERANCE) {
|
|||
|
|
// PhiAnt = 0;
|
|||
|
|
//}
|
|||
|
|
//else {}
|
|||
|
|
|
|||
|
|
|
|||
|
|
thetaAnt[idx] = ThetaAnt*r2d;
|
|||
|
|
phiAnt[idx] = PhiAnt*r2d;
|
|||
|
|
//printf("Rst=[%f,%f,%f];AntXaxis = [%f, %f, %f];AntYaxis=[%f,%f,%f];AntZaxis=[%f,%f,%f];phiAnt=%f;thetaAnt=%f;\n", Xst, Yst, Zst
|
|||
|
|
// , AntXaxisX, AntXaxisY, AntXaxisZ
|
|||
|
|
// , AntYaxisX, AntYaxisY, AntYaxisZ
|
|||
|
|
// , AntZaxisX, AntZaxisY, AntZaxisZ
|
|||
|
|
// , phiAnt[idx]
|
|||
|
|
// , thetaAnt[idx]
|
|||
|
|
//);
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
__global__ void CUDA_BillerInterpAntPattern(float* antpattern,
|
|||
|
|
float starttheta, float startphi, float dtheta, float dphi,
|
|||
|
|
long thetapoints, long phipoints,
|
|||
|
|
float* searththeta, float* searchphi, float* searchantpattern,
|
|||
|
|
long len) {
|
|||
|
|
long idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|||
|
|
if (idx < len) {
|
|||
|
|
float stheta = searththeta[idx];
|
|||
|
|
float sphi = searchphi[idx];
|
|||
|
|
float pthetaid = (stheta - starttheta) / dtheta;//
|
|||
|
|
float pphiid = (sphi - startphi) / dphi;
|
|||
|
|
|
|||
|
|
long lasttheta = floorf(pthetaid);
|
|||
|
|
long nextTheta = lasttheta + 1;
|
|||
|
|
long lastphi = floorf(pphiid);
|
|||
|
|
long nextPhi = lastphi + 1;
|
|||
|
|
|
|||
|
|
if (lasttheta < 0 || nextTheta < 0 || lastphi < 0 || nextPhi < 0 ||
|
|||
|
|
lasttheta >= thetapoints || nextTheta >= thetapoints || lastphi >= phipoints || nextPhi >= phipoints)
|
|||
|
|
{
|
|||
|
|
searchantpattern[idx] = 0;
|
|||
|
|
}
|
|||
|
|
else {
|
|||
|
|
float x = stheta;
|
|||
|
|
float y = sphi;
|
|||
|
|
|
|||
|
|
float x1 = lasttheta * dtheta + starttheta;
|
|||
|
|
float x2 = nextTheta * dtheta + starttheta;
|
|||
|
|
float y1 = lastphi * dphi + startphi;
|
|||
|
|
float y2 = nextPhi * dphi + startphi;
|
|||
|
|
|
|||
|
|
float z11 = antpattern[lasttheta * phipoints + lastphi];
|
|||
|
|
float z12 = antpattern[lasttheta * phipoints + nextPhi];
|
|||
|
|
float z21 = antpattern[nextTheta * phipoints + lastphi];
|
|||
|
|
float z22 = antpattern[nextTheta * phipoints + nextPhi];
|
|||
|
|
|
|||
|
|
|
|||
|
|
z11 = powf(10, z11 / 10);
|
|||
|
|
z12 = powf(10, z12 / 10);
|
|||
|
|
z21 = powf(10, z21 / 10);
|
|||
|
|
z22 = powf(10, z22 / 10);
|
|||
|
|
|
|||
|
|
float GainValue = (z11 * (x2 - x) * (y2 - y)
|
|||
|
|
+ z21 * (x - x1) * (y2 - y)
|
|||
|
|
+ z12 * (x2 - x) * (y - y1)
|
|||
|
|
+ z22 * (x - x1) * (y - y1));
|
|||
|
|
GainValue = GainValue / ((x2 - x1) * (y2 - y1));
|
|||
|
|
searchantpattern[idx] = GainValue;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
__global__ void CUDA_calculationEcho(float* sigma0, float* TransAnt, float* ReciveAnt,
|
|||
|
|
float* localangle, float* R, float* slopeangle,
|
|||
|
|
float nearRange, float Fs, float Pt, float lamda, long FreqIDmax,
|
|||
|
|
cuComplex* echoArr, long* FreqID,
|
|||
|
|
long len) {
|
|||
|
|
long idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|||
|
|
if (idx < len) {
|
|||
|
|
float r = R[idx];
|
|||
|
|
float amp = Pt * TransAnt[idx] * ReciveAnt[idx];
|
|||
|
|
amp = amp * sigma0[idx];
|
|||
|
|
amp = amp / (powf(4 * LAMP_CUDA_PI, 2) * powf(r, 4)); // <20><><EFBFBD><EFBFBD>ǿ<EFBFBD><C7BF>
|
|||
|
|
|
|||
|
|
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>λ
|
|||
|
|
float phi = (-4 * LAMP_CUDA_PI / lamda) * r;
|
|||
|
|
cuComplex echophi = make_cuComplex(0, phi);
|
|||
|
|
cuComplex echophiexp = cuCexpf(echophi);
|
|||
|
|
|
|||
|
|
float timeR = 2 * (r - nearRange) / LIGHTSPEED * Fs;
|
|||
|
|
long timeID = floorf(timeR);
|
|||
|
|
//if (timeID < 0 || timeID >= FreqIDmax) {
|
|||
|
|
// timeID = 0;
|
|||
|
|
// amp = 0;
|
|||
|
|
//}
|
|||
|
|
|
|||
|
|
cuComplex echo = make_cuComplex(echophiexp.x , echophiexp.y);
|
|||
|
|
echoArr[idx] = echo;
|
|||
|
|
FreqID[idx] = timeID;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
__global__ void CUDA_AntPatternInterpGain(float* anttheta, float* antphi, float* gain,
|
|||
|
|
float* antpattern, float starttheta, float startphi, float dtheta, float dphi, int thetapoints, int phipoints, long len) {
|
|||
|
|
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|||
|
|
|
|||
|
|
if (idx < len) {
|
|||
|
|
|
|||
|
|
float temptheta = anttheta[idx];
|
|||
|
|
float tempphi = antphi[idx];
|
|||
|
|
float antPatternGain = GPU_BillerInterpAntPattern(antpattern,
|
|||
|
|
starttheta, startphi, dtheta, dphi, thetapoints, phipoints,
|
|||
|
|
temptheta, tempphi) ;
|
|||
|
|
gain[idx] = antPatternGain;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
__global__ void CUDA_InterpSigma(
|
|||
|
|
long* demcls, float* sigmaAmp, float* localanglearr, long len,
|
|||
|
|
CUDASigmaParam* sigma0Paramslist, long sigmaparamslistlen) {
|
|||
|
|
long idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|||
|
|
if (idx < len) {
|
|||
|
|
long clsid = demcls[idx];
|
|||
|
|
float localangle = localanglearr[idx];
|
|||
|
|
CUDASigmaParam tempsigma = sigma0Paramslist[clsid];
|
|||
|
|
//printf("cls:%d;localangle=%f;\n",clsid, localangle);
|
|||
|
|
|
|||
|
|
if (localangle < 0 || localangle >= LAMP_CUDA_PI/2) {
|
|||
|
|
sigmaAmp[idx] = 0;
|
|||
|
|
}
|
|||
|
|
else {}
|
|||
|
|
|
|||
|
|
if (abs(tempsigma.p1)< PRECISIONTOLERANCE&&
|
|||
|
|
abs(tempsigma.p2) < PRECISIONTOLERANCE &&
|
|||
|
|
abs(tempsigma.p3) < PRECISIONTOLERANCE &&
|
|||
|
|
abs(tempsigma.p4) < PRECISIONTOLERANCE&&
|
|||
|
|
abs(tempsigma.p5) < PRECISIONTOLERANCE&&
|
|||
|
|
abs(tempsigma.p6) < PRECISIONTOLERANCE
|
|||
|
|
) {
|
|||
|
|
sigmaAmp[idx] = 0;
|
|||
|
|
}
|
|||
|
|
else {
|
|||
|
|
float sigma = GPU_getSigma0dB(tempsigma, localangle);
|
|||
|
|
sigma = powf(10.0, sigma / 10.0);// <20><><EFBFBD><EFBFBD>ɢ<EFBFBD><C9A2>ϵ<EFBFBD><CFB5>
|
|||
|
|
//printf("cls:%d;localangle=%f;sigma0=%f;\n", clsid, localangle, sigma);
|
|||
|
|
sigmaAmp[idx] = sigma;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
__global__ void CUDA_CalculationEchoAmp(float* sigma0, float* TransAnt, float* ReciveAnt, float* R,
|
|||
|
|
float Pt,
|
|||
|
|
float* ampArr, long len) {
|
|||
|
|
long idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|||
|
|
if (idx < len) {
|
|||
|
|
float r = R[idx];
|
|||
|
|
float amptemp = Pt * TransAnt[idx] * ReciveAnt[idx] * sigma0[idx];
|
|||
|
|
amptemp = amptemp / (powf(4 * LAMP_CUDA_PI, 2) * powf(r, 4)); // <20><><EFBFBD><EFBFBD>ǿ<EFBFBD><C7BF>
|
|||
|
|
ampArr[idx] = amptemp;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
__global__ void CUDA_CalculationEchoPhase(float* R, float lamda, float* phaseArr, long len) {
|
|||
|
|
long idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|||
|
|
if (idx < len) {
|
|||
|
|
float r = R[idx];
|
|||
|
|
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>λ
|
|||
|
|
float phi = (-4 * LAMP_CUDA_PI / lamda) * r;
|
|||
|
|
phaseArr[idx] = phi;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
__global__ void CUDA_CombinationEchoAmpAndPhase(float* R,
|
|||
|
|
float* echoAmp,float* echoPhase,
|
|||
|
|
float nearRange, float Fs, long plusepoints,
|
|||
|
|
cuComplex* echo, long* FreqID, long len) {
|
|||
|
|
long idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|||
|
|
if (idx < len) {
|
|||
|
|
float r = R[idx];
|
|||
|
|
float phase = echoPhase[idx];
|
|||
|
|
float amp = echoAmp[idx];
|
|||
|
|
cuComplex echophi = make_cuComplex(0, phase);
|
|||
|
|
cuComplex echophiexp = cuCexpf(echophi);
|
|||
|
|
|
|||
|
|
float timeR = 2 * (r - nearRange) / LIGHTSPEED * Fs;
|
|||
|
|
long timeID = floorf(timeR);
|
|||
|
|
if (timeID < 0 || timeID >= plusepoints) {
|
|||
|
|
timeID = 0;
|
|||
|
|
amp = 0;
|
|||
|
|
}
|
|||
|
|
cuComplex echotemp = make_cuComplex(echophiexp.x*amp, echophiexp.y*amp);
|
|||
|
|
echo[idx] = echotemp;
|
|||
|
|
FreqID[idx] = timeID;
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
|
|||
|
|
extern "C" void SatelliteAntDirectNormal(float* RstX, float* RstY, float* RstZ,
|
|||
|
|
float antXaxisX, float antXaxisY, float antXaxisZ,
|
|||
|
|
float antYaxisX, float antYaxisY, float antYaxisZ,
|
|||
|
|
float antZaxisX, float antZaxisY, float antZaxisZ,
|
|||
|
|
float antDirectX, float antDirectY, float antDirectZ,
|
|||
|
|
float* thetaAnt, float* phiAnt
|
|||
|
|
, long len) {
|
|||
|
|
|
|||
|
|
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
|
|||
|
|
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
|
|||
|
|
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
|
|||
|
|
CUDA_SatelliteAntDirectNormal << <numBlocks, blockSize >> > (RstX, RstY, RstZ,
|
|||
|
|
antXaxisX, antXaxisY, antXaxisZ,
|
|||
|
|
antYaxisX, antYaxisY, antYaxisZ,
|
|||
|
|
antZaxisX, antZaxisY, antZaxisZ,
|
|||
|
|
antDirectX, antDirectY, antDirectZ,
|
|||
|
|
thetaAnt, phiAnt
|
|||
|
|
, len);
|
|||
|
|
|
|||
|
|
#ifdef __CUDADEBUG__
|
|||
|
|
cudaError_t err = cudaGetLastError();
|
|||
|
|
if (err != cudaSuccess) {
|
|||
|
|
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
|
|||
|
|
// Possibly: exit(-1) if program cannot continue....
|
|||
|
|
}
|
|||
|
|
#endif // __CUDADEBUG__
|
|||
|
|
cudaDeviceSynchronize();
|
|||
|
|
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
extern "C" void AntPatternInterpGain(float* anttheta, float* antphi, float* gain,
|
|||
|
|
float* antpattern, float starttheta, float startphi, float dtheta, float dphi, int thetapoints, int phipoints, long len) {
|
|||
|
|
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
|
|||
|
|
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
|
|||
|
|
//printf("\nCUDA_RTPC_SiglePRF blockSize:%d ,numBlock:%d\n", blockSize, numBlocks);
|
|||
|
|
|
|||
|
|
CUDA_AntPatternInterpGain << <numBlocks, blockSize >> > ( anttheta,antphi, gain,
|
|||
|
|
antpattern,
|
|||
|
|
starttheta, startphi, dtheta, dphi, thetapoints, phipoints,
|
|||
|
|
len);
|
|||
|
|
#ifdef __CUDADEBUG__
|
|||
|
|
cudaError_t err = cudaGetLastError();
|
|||
|
|
if (err != cudaSuccess) {
|
|||
|
|
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
|
|||
|
|
// Possibly: exit(-1) if program cannot continue....
|
|||
|
|
}
|
|||
|
|
#endif // __CUDADEBUG__
|
|||
|
|
cudaDeviceSynchronize();
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
extern "C" void calculationEcho(float* sigma0, float* TransAnt, float* ReciveAnt,
|
|||
|
|
float* localangle, float* R, float* slopeangle,
|
|||
|
|
float nearRange, float Fs, float pt, float lamda, long FreqIDmax,
|
|||
|
|
cuComplex* echoAmp, long* FreqID,
|
|||
|
|
long len)
|
|||
|
|
{
|
|||
|
|
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
|
|||
|
|
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
|
|||
|
|
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
|
|||
|
|
CUDA_calculationEcho << <numBlocks, blockSize >> > (sigma0, TransAnt, ReciveAnt,
|
|||
|
|
localangle, R, slopeangle,
|
|||
|
|
nearRange, Fs, pt, lamda, FreqIDmax,
|
|||
|
|
echoAmp, FreqID,
|
|||
|
|
len);
|
|||
|
|
#ifdef __CUDADEBUG__
|
|||
|
|
cudaError_t err = cudaGetLastError();
|
|||
|
|
if (err != cudaSuccess) {
|
|||
|
|
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
|
|||
|
|
// Possibly: exit(-1) if program cannot continue....
|
|||
|
|
}
|
|||
|
|
#endif // __CUDADEBUG__
|
|||
|
|
cudaDeviceSynchronize();
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
extern "C" void CUDACalculationEchoAmp(float* sigma0, float* TransAnt, float* ReciveAnt, float* R, float Pt, float* ampArr, long len)
|
|||
|
|
{
|
|||
|
|
|
|||
|
|
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
|
|||
|
|
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
|
|||
|
|
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
|
|||
|
|
CUDA_CalculationEchoAmp << <numBlocks, blockSize >> > (
|
|||
|
|
sigma0, TransAnt, ReciveAnt, R, Pt, ampArr, len);
|
|||
|
|
#ifdef __CUDADEBUG__
|
|||
|
|
cudaError_t err = cudaGetLastError();
|
|||
|
|
if (err != cudaSuccess) {
|
|||
|
|
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
|
|||
|
|
// Possibly: exit(-1) if program cannot continue....
|
|||
|
|
}
|
|||
|
|
#endif // __CUDADEBUG__
|
|||
|
|
cudaDeviceSynchronize();
|
|||
|
|
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
extern "C" void CUDACalculationEchoPhase(float* R, float lamda, float* phaseArr, long len)
|
|||
|
|
{
|
|||
|
|
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
|
|||
|
|
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
|
|||
|
|
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
|
|||
|
|
CUDA_CalculationEchoPhase << <numBlocks, blockSize >> > (
|
|||
|
|
R, lamda, phaseArr, len);
|
|||
|
|
#ifdef __CUDADEBUG__
|
|||
|
|
cudaError_t err = cudaGetLastError();
|
|||
|
|
if (err != cudaSuccess) {
|
|||
|
|
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
|
|||
|
|
// Possibly: exit(-1) if program cannot continue....
|
|||
|
|
}
|
|||
|
|
#endif // __CUDADEBUG__
|
|||
|
|
cudaDeviceSynchronize();
|
|||
|
|
|
|||
|
|
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
extern "C" void CUDACombinationEchoAmpAndPhase(float* R,
|
|||
|
|
float* echoAmp, float* echoPhase,
|
|||
|
|
float nearRange, float Fs, long plusepoints, cuComplex* echo, long* FreqID, long len)
|
|||
|
|
{
|
|||
|
|
|
|||
|
|
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
|
|||
|
|
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
|
|||
|
|
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
|
|||
|
|
CUDA_CombinationEchoAmpAndPhase << <numBlocks, blockSize >> > (
|
|||
|
|
R,
|
|||
|
|
echoAmp, echoPhase,
|
|||
|
|
nearRange, Fs, plusepoints, echo, FreqID, len
|
|||
|
|
);
|
|||
|
|
#ifdef __CUDADEBUG__
|
|||
|
|
cudaError_t err = cudaGetLastError();
|
|||
|
|
if (err != cudaSuccess) {
|
|||
|
|
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
|
|||
|
|
// Possibly: exit(-1) if program cannot continue....
|
|||
|
|
}
|
|||
|
|
#endif // __CUDADEBUG__
|
|||
|
|
cudaDeviceSynchronize();
|
|||
|
|
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
extern "C" void CUDAInterpSigma(
|
|||
|
|
long* demcls,float* sigmaAmp, float* localanglearr,long len,
|
|||
|
|
CUDASigmaParam* sigma0Paramslist, long sigmaparamslistlen) {// <20>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>-sigma<6D><61>ֵ<EFBFBD><D6B5>Ӧ<EFBFBD><D3A6><EFBFBD><EFBFBD>-ulaby
|
|||
|
|
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
|
|||
|
|
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
|
|||
|
|
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
|
|||
|
|
CUDA_InterpSigma << <numBlocks, blockSize >> > (
|
|||
|
|
demcls, sigmaAmp, localanglearr, len,
|
|||
|
|
sigma0Paramslist, sigmaparamslistlen
|
|||
|
|
);
|
|||
|
|
#ifdef __CUDADEBUG__
|
|||
|
|
cudaError_t err = cudaGetLastError();
|
|||
|
|
if (err != cudaSuccess) {
|
|||
|
|
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
|
|||
|
|
// Possibly: exit(-1) if program cannot continue....
|
|||
|
|
}
|
|||
|
|
#endif // __CUDADEBUG__
|
|||
|
|
cudaDeviceSynchronize();
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
|
|||
|
|
#endif
|
|||
|
|
|
|||
|
|
|