RasterProcessTool/BaseTool/GPUTool.cu

954 lines
32 KiB
Plaintext
Raw Normal View History

2024-12-24 02:50:25 +00:00
#include <iostream>
#include <memory>
#include <cmath>
#include <complex>
#include <device_launch_parameters.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cuComplex.h>
#include "BaseConstVariable.h"
#include "GPUTool.cuh"
#ifdef __CUDANVCC___
#define CUDAMEMORY Memory1MB*100
#define LAMP_CUDA_PI 3.141592653589793238462643383279
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
__device__ cuComplex cuCexpf(cuComplex x)
{
float factor = exp(x.x);
return make_cuComplex(factor * cos(x.y), factor * sin(x.y));
}
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
__device__ float GPU_getSigma0dB(CUDASigmaParam param, float theta) {
float sigma= param.p1 + param.p2 * exp(-param.p3 * theta) + param.p4 * cos(param.p5 * theta + param.p6);
return sigma;
}
__device__ CUDAVector GPU_VectorAB(CUDAVector A, CUDAVector B) {
CUDAVector C;
C.x = B.x - A.x;
C.y = B.y - A.y;
C.z = B.z - A.z;
return C;
}
__device__ float GPU_VectorNorm2(CUDAVector A) {
return sqrtf(A.x * A.x + A.y * A.y + A.z * A.z);
}
__device__ float GPU_dotVector(CUDAVector A, CUDAVector B) {
return A.x * B.x + A.y * B.y + A.z * B.z;
}
__device__ float GPU_CosAngle_VectorA_VectorB(CUDAVector A, CUDAVector B) {
return GPU_dotVector(A, B) / (GPU_VectorNorm2(A) * GPU_VectorNorm2(B));
}
__device__ CUDAVectorEllipsoidal GPU_SatelliteAntDirectNormal(float RstX, float RstY, float RstZ,
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ
) {
CUDAVectorEllipsoidal result{ 0,0,-1 };
float Xst = -1 * RstX; // <20><><EFBFBD><EFBFBD> --> <20><><EFBFBD><EFBFBD>
float Yst = -1 * RstY;
float Zst = -1 * RstZ;
float AntXaxisX = antXaxisX;
float AntXaxisY = antXaxisY;
float AntXaxisZ = antXaxisZ;
float AntYaxisX = antYaxisX;
float AntYaxisY = antYaxisY;
float AntYaxisZ = antYaxisZ;
float AntZaxisX = antZaxisX;
float AntZaxisY = antZaxisY;
float AntZaxisZ = antZaxisZ;
// <20><><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵ<EFBFBD>µ<EFBFBD>ֵ
float Xant = (Xst * (AntYaxisY * AntZaxisZ - AntYaxisZ * AntZaxisY) + Xst * (AntXaxisZ * AntZaxisY - AntXaxisY * AntZaxisZ) + Xst * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
float Yant = (Yst * (AntYaxisZ * AntZaxisX - AntYaxisX * AntZaxisZ) + Yst * (AntXaxisX * AntZaxisZ - AntXaxisZ * AntZaxisX) + Yst * (AntYaxisX * AntXaxisZ - AntXaxisX * AntYaxisZ)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
float Zant = (Zst * (AntYaxisX * AntZaxisY - AntYaxisY * AntZaxisX) + Zst * (AntXaxisY * AntZaxisX - AntXaxisX * AntZaxisY) + Zst * (AntXaxisX * AntYaxisY - AntYaxisX * AntXaxisY)) / (AntXaxisX * (AntYaxisY * AntZaxisZ - AntZaxisY * AntYaxisZ) - AntYaxisX * (AntXaxisY * AntZaxisZ - AntXaxisZ * AntZaxisY) + AntZaxisX * (AntXaxisY * AntYaxisZ - AntXaxisZ * AntYaxisY));
// <20><><EFBFBD><EFBFBD>theta <20><> phi
float Norm = sqrtf(Xant * Xant + Yant * Yant + Zant * Zant); // <20><><EFBFBD><EFBFBD> pho
float ThetaAnt = acosf(Zant / Norm); // theta <20><> Z<><5A><EFBFBD>ļн<C4BC>
float YsinTheta = Yant / sinf(ThetaAnt);
float PhiAnt = (YsinTheta / abs(YsinTheta)) * acosf(Xant / (Norm * sinf(ThetaAnt)));
result.theta = ThetaAnt;
result.phi = PhiAnt;
result.pho = Norm;
return result;
}
/**
<EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><EFBFBD><EFBFBD>ͼ<EFBFBD><EFBFBD>ֵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˫<EFBFBD><EFBFBD><EFBFBD>Բ<EFBFBD>ֵ<EFBFBD>㷨Ϊ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>theta<EFBFBD><EFBFBD>phi<EFBFBD><EFBFBD><EFBFBD>ϵõ<EFBFBD><EFBFBD>ľ<EFBFBD><EFBFBD><EFBFBD>ͼΪ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ݣ<EFBFBD>ͨ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ķ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȡĿ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ݡ<EFBFBD>
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>theta<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>phi
*/
__device__ float GPU_BillerInterpAntPattern(float* antpattern,
float starttheta, float startphi, float dtheta, float dphi,
long thetapoints, long phipoints,
float searththeta, float searchphi) {
float stheta = searththeta;
float sphi = searchphi;
if (stheta > 90) {
return 0;
}
else {}
float pthetaid = (stheta - starttheta) / dtheta;//
float pphiid = (sphi - startphi) / dphi;
long lasttheta = floorf(pthetaid);
long nextTheta = lasttheta + 1;
long lastphi = floorf(pphiid);
long nextPhi = lastphi + 1;
if (lasttheta < 0 || nextTheta < 0 || lastphi < 0 || nextPhi < 0 ||
lasttheta >= thetapoints || nextTheta >= thetapoints || lastphi >= phipoints || nextPhi >= phipoints)
{
return 0;
}
else {
float x = stheta;
float y = sphi;
float x1 = lasttheta * dtheta + starttheta;
float x2 = nextTheta * dtheta + starttheta;
float y1 = lastphi * dphi + startphi;
float y2 = nextPhi * dphi + startphi;
float z11 = antpattern[lasttheta * phipoints + lastphi];
float z12 = antpattern[lasttheta * phipoints + nextPhi];
float z21 = antpattern[nextTheta * phipoints + lastphi];
float z22 = antpattern[nextTheta * phipoints + nextPhi];
//z11 = powf(10, z11 / 10); // dB-> <20><><EFBFBD><EFBFBD>
//z12 = powf(10, z12 / 10);
//z21 = powf(10, z21 / 10);
//z22 = powf(10, z22 / 10);
float GainValue = (z11 * (x2 - x) * (y2 - y)
+ z21 * (x - x1) * (y2 - y)
+ z12 * (x2 - x) * (y - y1)
+ z22 * (x - x1) * (y - y1));
GainValue = GainValue / ((x2 - x1) * (y2 - y1));
return GainValue;
}
}
__device__ cuComplex GPU_calculationEcho(float sigma0, float TransAnt, float ReciveAnt,
float localangle, float R, float slopeangle, float Pt, float lamda) {
float r = R;
float amp = Pt * TransAnt * ReciveAnt;
amp = amp * sigma0;
amp = amp / (powf(4 * LAMP_CUDA_PI, 2) * powf(r, 4)); // <20><><EFBFBD><EFBFBD>ǿ<EFBFBD><C7BF>
float phi = (-4 * LAMP_CUDA_PI / lamda) * r;
cuComplex echophi = make_cuComplex(0, phi);
cuComplex echophiexp = cuCexpf(echophi);
cuComplex echo;
echo.x = echophiexp.x * amp;
echo.y = echophiexp.y * amp;
return echo;
}
__global__ void CUDA_DistanceAB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* R, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
R[idx] = sqrtf(powf(Ax[idx] - Bx[idx], 2) + powf(Ay[idx] - By[idx], 2) + powf(Az[idx] - Bz[idx], 2));
}
}
__global__ void CUDA_B_DistanceA(float* Ax, float* Ay, float* Az, float Bx, float By, float Bz, float* R, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
R[idx] = sqrtf(powf(Ax[idx] - Bx, 2) + powf(Ay[idx] - By, 2) + powf(Az[idx] - Bz, 2));
}
}
__global__ void CUDA_make_VectorA_B(float sX, float sY, float sZ, float* tX, float* tY, float* tZ, float* RstX, float* RstY, float* RstZ, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
RstX[idx] = sX - tX[idx]; // <20><><EFBFBD><EFBFBD>-><3E><>
RstY[idx] = sY - tY[idx];
RstZ[idx] = sZ - tZ[idx];
}
}
__global__ void CUDA_Norm_Vector(float* Vx, float* Vy, float* Vz, float* R, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
R[idx] = sqrtf(powf(Vx[idx], 2) + powf(Vy[idx], 2) + powf(Vz[idx], 2));
}
}
__global__ void CUDA_cosAngle_VA_AB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* anglecos, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float tAx = Ax[idx];
float tAy = Ay[idx];
float tAz = Az[idx];
float tBx = Bx[idx];
float tBy = By[idx];
float tBz = Bz[idx];
float AR = sqrtf(powf(tAx, 2) + powf(tAy, 2) + powf(tAz, 2));
float BR = sqrtf(powf(tBx, 2) + powf(tBy, 2) + powf(tBz, 2));
float dotAB = tAx * tBx + tAy * tBy + tAz * tBz;
float result = acosf(dotAB / (AR * BR));
anglecos[idx] = result;
}
}
__global__ void CUDA_SatelliteAntDirectNormal(float* RstX, float* RstY, float* RstZ,
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ,
float* thetaAnt, float* phiAnt
, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float Xst = -1 * RstX[idx]; // <20><><EFBFBD><EFBFBD> --> <20><><EFBFBD><EFBFBD>
float Yst = -1 * RstY[idx];
float Zst = -1 * RstZ[idx];
float AntXaxisX = antXaxisX;
float AntXaxisY = antXaxisY;
float AntXaxisZ = antXaxisZ;
float AntYaxisX = antYaxisX;
float AntYaxisY = antYaxisY;
float AntYaxisZ = antYaxisZ;
float AntZaxisX = antZaxisX;
float AntZaxisY = antZaxisY;
float AntZaxisZ = antZaxisZ;
// <20><>һ<EFBFBD><D2BB>
float RstNorm = sqrtf(Xst * Xst + Yst * Yst + Zst * Zst);
float AntXaxisNorm = sqrtf(AntXaxisX * AntXaxisX + AntXaxisY * AntXaxisY + AntXaxisZ * AntXaxisZ);
float AntYaxisNorm = sqrtf(AntYaxisX * AntYaxisX + AntYaxisY * AntYaxisY + AntYaxisZ * AntYaxisZ);
float AntZaxisNorm = sqrtf(AntZaxisX * AntZaxisX + AntZaxisY * AntZaxisY + AntZaxisZ * AntZaxisZ);
float Rx = Xst / RstNorm;
float Ry = Yst / RstNorm;
float Rz = Zst / RstNorm;
float Xx = AntXaxisX / AntXaxisNorm;
float Xy = AntXaxisY / AntXaxisNorm;
float Xz = AntXaxisZ / AntXaxisNorm;
float Yx = AntYaxisX / AntYaxisNorm;
float Yy = AntYaxisY / AntYaxisNorm;
float Yz = AntYaxisZ / AntYaxisNorm;
float Zx = AntZaxisX / AntZaxisNorm;
float Zy = AntZaxisY / AntZaxisNorm;
float Zz = AntZaxisZ / AntZaxisNorm;
float Xant = (Rx * Yy * Zz - Rx * Yz * Zy - Ry * Yx * Zz + Ry * Yz * Zx + Rz * Yx * Zy - Rz * Yy * Zx) / (Xx * Yy * Zz - Xx * Yz * Zy - Xy * Yx * Zz + Xy * Yz * Zx + Xz * Yx * Zy - Xz * Yy * Zx);
float Yant = -(Rx * Xy * Zz - Rx * Xz * Zy - Ry * Xx * Zz + Ry * Xz * Zx + Rz * Xx * Zy - Rz * Xy * Zx) / (Xx * Yy * Zz - Xx * Yz * Zy - Xy * Yx * Zz + Xy * Yz * Zx + Xz * Yx * Zy - Xz * Yy * Zx);
float Zant = (Rx * Xy * Yz - Rx * Xz * Yy - Ry * Xx * Yz + Ry * Xz * Yx + Rz * Xx * Yy - Rz * Xy * Yx) / (Xx * Yy * Zz - Xx * Yz * Zy - Xy * Yx * Zz + Xy * Yz * Zx + Xz * Yx * Zy - Xz * Yy * Zx);
// <20><><EFBFBD><EFBFBD>theta <20><> phi
float Norm = sqrtf(Xant * Xant + Yant * Yant + Zant * Zant); // <20><><EFBFBD><EFBFBD> pho
float ThetaAnt = acosf(Zant / Norm); // theta <20><> Z<><5A><EFBFBD>ļн<C4BC>
float PhiAnt = atanf(Yant / Xant); // -pi/2 ~pi/2
if (abs(Yant) < PRECISIONTOLERANCE) { // X<><58><EFBFBD><EFBFBD>
PhiAnt = 0;
}
else if (abs(Xant) < PRECISIONTOLERANCE) { // Y<><59><EFBFBD>ϣ<EFBFBD>ԭ<EFBFBD><D4AD>
if (Yant > 0) {
PhiAnt = PI / 2;
}
else {
PhiAnt = -PI / 2;
}
}
else if (Xant < 0) {
if (Yant > 0) {
PhiAnt = PI + PhiAnt;
}
else {
PhiAnt = -PI+PhiAnt ;
}
}
else { // Xant>0 X <20><><EFBFBD><EFBFBD>
}
if (isnan(PhiAnt)) {
printf("V=[%f,%f,%f];norm=%f;thetaAnt=%f;phiAnt=%f;\n", Xant, Yant, Zant,Norm, ThetaAnt, PhiAnt);
}
//if (abs(ThetaAnt - 0) < PRECISIONTOLERANCE) {
// PhiAnt = 0;
//}
//else {}
thetaAnt[idx] = ThetaAnt*r2d;
phiAnt[idx] = PhiAnt*r2d;
//printf("Rst=[%f,%f,%f];AntXaxis = [%f, %f, %f];AntYaxis=[%f,%f,%f];AntZaxis=[%f,%f,%f];phiAnt=%f;thetaAnt=%f;\n", Xst, Yst, Zst
// , AntXaxisX, AntXaxisY, AntXaxisZ
// , AntYaxisX, AntYaxisY, AntYaxisZ
// , AntZaxisX, AntZaxisY, AntZaxisZ
// , phiAnt[idx]
// , thetaAnt[idx]
//);
}
}
__global__ void CUDA_BillerInterpAntPattern(float* antpattern,
float starttheta, float startphi, float dtheta, float dphi,
long thetapoints, long phipoints,
float* searththeta, float* searchphi, float* searchantpattern,
long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float stheta = searththeta[idx];
float sphi = searchphi[idx];
float pthetaid = (stheta - starttheta) / dtheta;//
float pphiid = (sphi - startphi) / dphi;
long lasttheta = floorf(pthetaid);
long nextTheta = lasttheta + 1;
long lastphi = floorf(pphiid);
long nextPhi = lastphi + 1;
if (lasttheta < 0 || nextTheta < 0 || lastphi < 0 || nextPhi < 0 ||
lasttheta >= thetapoints || nextTheta >= thetapoints || lastphi >= phipoints || nextPhi >= phipoints)
{
searchantpattern[idx] = 0;
}
else {
float x = stheta;
float y = sphi;
float x1 = lasttheta * dtheta + starttheta;
float x2 = nextTheta * dtheta + starttheta;
float y1 = lastphi * dphi + startphi;
float y2 = nextPhi * dphi + startphi;
float z11 = antpattern[lasttheta * phipoints + lastphi];
float z12 = antpattern[lasttheta * phipoints + nextPhi];
float z21 = antpattern[nextTheta * phipoints + lastphi];
float z22 = antpattern[nextTheta * phipoints + nextPhi];
z11 = powf(10, z11 / 10);
z12 = powf(10, z12 / 10);
z21 = powf(10, z21 / 10);
z22 = powf(10, z22 / 10);
float GainValue = (z11 * (x2 - x) * (y2 - y)
+ z21 * (x - x1) * (y2 - y)
+ z12 * (x2 - x) * (y - y1)
+ z22 * (x - x1) * (y - y1));
GainValue = GainValue / ((x2 - x1) * (y2 - y1));
searchantpattern[idx] = GainValue;
}
}
}
__global__ void CUDA_Test_HelloWorld(float a, long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
printf("\nidx:\t %d %d \n", idx, len);
}
__global__ void CUDA_RTPC(
float antPx, float antPy, float antPz,// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ,
float* demx, float* demy, float* demz, long* demcls,
float* demslopex, float* demslopey, float* demslopez, float* demslopeangle,
float* Tantpattern, float Tstarttheta, float Tstartphi, float Tdtheta, float Tdphi, long Tthetapoints, long Tphipoints,
float* Rantpattern, float Rstarttheta, float Rstartphi, float Rdtheta, float Rdphi, long Rthetapoints, long Rphipoints,
float lamda, float fs, float nearrange, float Pt, long Freqnumbers, // <20><><EFBFBD><EFBFBD>
CUDASigmaParam* sigma0Paramslist, long sigmaparamslistlen,// <20>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>-sigma<6D><61>ֵ<EFBFBD><D6B5>Ӧ<EFBFBD><D3A6><EFBFBD><EFBFBD>-ulaby
cuComplex* outecho, int* d_echoAmpFID,
int linecount,int plusepoint) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
//printf("\nidx:\t %d %d %d\n", idx, linecount, plusepoint);
if (idx < linecount* plusepoint) {
long clsid = demcls[idx];
CUDAVector Rs{ antPx,antPy,antPz };
CUDAVector Rt{ demx[idx],demy[idx],demz[idx] };
CUDAVector Rst{ Rs.x - Rt.x,Rs.y - Rt.y,Rs.z - Rt.z };
CUDAVector Vslope{ demslopex[idx],demslopey[idx],demslopez[idx] };
float R = GPU_VectorNorm2(Rst); // б<><D0B1>
float slopeangle = demslopeangle[idx];
CUDAVectorEllipsoidal Rtanttheta = GPU_SatelliteAntDirectNormal( // <20><><EFBFBD><EFBFBD>Ŀ<EFBFBD><C4BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ߵ<EFBFBD>λ<EFBFBD><CEBB>
Rst.x, Rst.y, Rst.z,
antXaxisX, antXaxisY, antXaxisZ,
antYaxisX, antYaxisY, antYaxisZ,
antZaxisX, antZaxisY, antZaxisZ,
antDirectX, antDirectY, antDirectZ);
float localangle = GPU_CosAngle_VectorA_VectorB(Rst, Vslope); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
float sigma = GPU_getSigma0dB(sigma0Paramslist[clsid], localangle * r2d);
sigma = powf(10.0, sigma / 10.0);// <20><><EFBFBD><EFBFBD>ɢ<EFBFBD><C9A2>ϵ<EFBFBD><CFB5>
//printf("\ntheta: %f\t,%f ,%f ,%f ,%f ,%f ,%f \n", localangle * r2d, sigma0Paramslist[clsid].p1, sigma0Paramslist[clsid].p2, sigma0Paramslist[clsid].p3,
// sigma0Paramslist[clsid].p4, sigma0Paramslist[clsid].p5, sigma0Paramslist[clsid].p6);
// <20><><EFBFBD><EFBFBD><E4B7BD>ͼ
float transPattern = GPU_BillerInterpAntPattern(Tantpattern,
Tstarttheta, Tstartphi, Tdtheta, Tdphi, Tthetapoints, Tphipoints,
Rtanttheta.theta, Rtanttheta.phi) * r2d;
// <20><><EFBFBD>շ<EFBFBD><D5B7><EFBFBD>ͼ
float receivePattern = GPU_BillerInterpAntPattern(Rantpattern,
Rstarttheta, Rstartphi, Rdtheta, Rdphi, Rthetapoints, Rphipoints,
Rtanttheta.theta, Rtanttheta.phi) * r2d;
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>λ
float amp = Pt * transPattern * receivePattern * sigma * (1 / cos(slopeangle) * sin(localangle));
amp = amp / (powf(4 * LAMP_CUDA_PI, 2) * powf(R, 4));
float phi = (-4 * LAMP_CUDA_PI / lamda) * R;
// <20><><EFBFBD><EFBFBD><EFBFBD>ز<EFBFBD>
cuComplex echophi = make_cuComplex(0, phi);
cuComplex echophiexp = cuCexpf(echophi);
float timeR = 2 * (R - nearrange) / LIGHTSPEED * fs;
long timeID = floorf(timeR);
if (timeID < 0 || timeID >= Freqnumbers) {
timeID = 0;
amp = 0;
}
else {}
cuComplex echo;
echo.x = echophiexp.x * amp;
echo.y = echophiexp.y * amp;
outecho[idx] = echo;
d_echoAmpFID[idx] = timeID;
}
}
__global__ void CUDA_TBPImage(
float* antPx, float* antPy, float* antPz,
float* imgx, float* imgy, float* imgz,
cuComplex* echoArr, cuComplex* imgArr,
float freq, float fs, float Rnear, float Rfar,
long rowcount, long colcount,
long prfid, long freqcount
) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
//printf("\nidx:\t %d %d %d\n", idx, linecount, plusepoint);
if (idx < rowcount * colcount) {
float R = sqrtf(powf(antPx[prfid] - imgx[idx], 2) + powf(antPy[prfid] - imgy[idx], 2) + powf(antPz[prfid] - imgz[idx], 2));
float Ridf = ((R - Rnear) * 2 / LIGHTSPEED) * fs;
long Rid = floorf(Ridf);
if(Rid <0|| Rid >= freqcount){}
else {
float factorj = freq * 4 * PI / LIGHTSPEED;
cuComplex Rphi =cuCexpf(make_cuComplex(0, factorj * R));// У<><D0A3><EFBFBD><EFBFBD>
imgArr[idx] = cuCaddf(imgArr[idx], cuCmulf(echoArr[Rid] , Rphi));// <20><><EFBFBD><EFBFBD>
}
}
}
__global__ void CUDA_calculationEcho(float* sigma0, float* TransAnt, float* ReciveAnt,
float* localangle, float* R, float* slopeangle,
float nearRange, float Fs, float Pt, float lamda, long FreqIDmax,
cuComplex* echoArr, long* FreqID,
long len) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float r = R[idx];
float amp = Pt * TransAnt[idx] * ReciveAnt[idx];
amp = amp * sigma0[idx];
amp = amp / (powf(4 * LAMP_CUDA_PI, 2) * powf(r, 4)); // <20><><EFBFBD><EFBFBD>ǿ<EFBFBD><C7BF>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>λ
float phi = (-4 * LAMP_CUDA_PI / lamda) * r;
cuComplex echophi = make_cuComplex(0, phi);
cuComplex echophiexp = cuCexpf(echophi);
float timeR = 2 * (r - nearRange) / LIGHTSPEED * Fs;
long timeID = floorf(timeR);
if (timeID < 0 || timeID >= FreqIDmax) {
timeID = 0;
amp = 0;
}
cuComplex echo;
echo.x = echophiexp.x * amp;
echo.y = echophiexp.y * amp;
echoArr[idx] = echo;
FreqID[idx] = timeID;
}
}
__global__ void CUDA_AntPatternInterpGain(float* anttheta, float* antphi, float* gain,
float* antpattern, float starttheta, float startphi, float dtheta, float dphi, int thetapoints, int phipoints, long len) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
float temptheta = anttheta[idx];
float tempphi = antphi[idx];
float antPatternGain = GPU_BillerInterpAntPattern(antpattern,
starttheta, startphi, dtheta, dphi, thetapoints, phipoints,
temptheta, tempphi) ;
gain[idx] = antPatternGain;
}
}
//__global__ void Sigma0InterpPixel(long* demcls, float* demslopeangle, CUDASigmaParam* sigma0Paramslist, float* localangle, float* sigma0list, long sigmaparamslistlen, long len)
//{
// long idx = blockIdx.x * blockDim.x + threadIdx.x;
// if (idx < len) {
// long clsid = demcls[idx];
// if(clsid<=)
// sigma0list[idx] = 0;
// }
//}
__global__ void CUDA_InterpSigma(
long* demcls, float* sigmaAmp, float* localanglearr, long len,
CUDASigmaParam* sigma0Paramslist, long sigmaparamslistlen) {
long idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) {
long clsid = demcls[idx];
float localangle = localanglearr[idx] * r2d;
CUDASigmaParam tempsigma = sigma0Paramslist[clsid];
//printf("cls:%d;localangle=%f;\n",clsid, localangle);
if (localangle < 0 || localangle >= 90) {
sigmaAmp[idx] = 0;
}
else {}
if (abs(tempsigma.p1)< PRECISIONTOLERANCE&&
abs(tempsigma.p2) < PRECISIONTOLERANCE &&
abs(tempsigma.p3) < PRECISIONTOLERANCE &&
abs(tempsigma.p4) < PRECISIONTOLERANCE&&
abs(tempsigma.p5) < PRECISIONTOLERANCE&&
abs(tempsigma.p6) < PRECISIONTOLERANCE
) {
sigmaAmp[idx] = 0;
}
else {
float sigma = GPU_getSigma0dB(tempsigma, localangle);
sigma = powf(10.0, sigma / 10.0);// <20><><EFBFBD><EFBFBD>ɢ<EFBFBD><C9A2>ϵ<EFBFBD><CFB5>
//printf("cls:%d;localangle=%f;sigma0=%f;\n", clsid, localangle, sigma);
sigmaAmp[idx] = sigma;
}
}
}
//<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʾ
void checkCudaError(cudaError_t err, const char* msg) {
if (err != cudaSuccess) {
std::cerr << "CUDA error: " << msg << " (" << cudaGetErrorString(err) << ")" << std::endl;
exit(EXIT_FAILURE);
}
}
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڴ<EFBFBD><DAB4><EFBFBD><EFBFBD><EFBFBD>
extern "C" void* mallocCUDAHost(long memsize) {
void* ptr;
cudaMallocHost(&ptr, memsize);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("mallocCUDAHost CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
return ptr;
}
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڴ<EFBFBD><DAB4>ͷ<EFBFBD>
extern "C" void FreeCUDAHost(void* ptr) {
cudaFreeHost(ptr);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("FreeCUDAHost CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
// GPU<50><55><EFBFBD><EFBFBD><EFBFBD>ڴ<EFBFBD><DAB4><EFBFBD><EFBFBD><EFBFBD>
extern "C" void* mallocCUDADevice(long memsize) {
void* ptr;
cudaMalloc(&ptr, memsize);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("mallocCUDADevice CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
return ptr;
}
// GPU<50><55><EFBFBD><EFBFBD><EFBFBD>ڴ<EFBFBD><DAB4>ͷ<EFBFBD>
extern "C" void FreeCUDADevice(void* ptr) {
cudaFree(ptr);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("FreeCUDADevice CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
// GPU <20>ڴ<EFBFBD><DAB4><EFBFBD><EFBFBD><EFBFBD>ת<EFBFBD><D7AA>
extern "C" void HostToDevice(void* hostptr, void* deviceptr, long memsize) {
cudaMemcpy(deviceptr, hostptr, memsize, cudaMemcpyHostToDevice);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("HostToDevice CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void DeviceToHost(void* hostptr, void* deviceptr, long memsize) {
cudaMemcpy(hostptr, deviceptr, memsize, cudaMemcpyDeviceToHost);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("DeviceToHost CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void CUDATestHelloWorld(float a,long len) {
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϳ<EFBFBD><CDBF>ijߴ<C4B3>
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
CUDA_Test_HelloWorld << <numBlocks, blockSize >> > (a, len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("FreeCUDADevice CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
void CUDATBPImage(float* antPx, float* antPy, float* antPz,
float* imgx, float* imgy, float* imgz,
cuComplex* echoArr, cuComplex* imgArr,
float freq, float fs, float Rnear, float Rfar,
long rowcount, long colcount,
long prfid, long freqcount)
{
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
int numBlocks = (rowcount * colcount + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
//printf("\nCUDA_RTPC_SiglePRF blockSize:%d ,numBlock:%d\n",blockSize,numBlocks);
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD> CUDA_RTPC_Kernel
CUDA_TBPImage << <numBlocks, blockSize >> > (
antPx, antPy, antPz,
imgx, imgy, imgz,
echoArr, imgArr,
freq, fs, Rnear, Rfar,
rowcount, colcount,
prfid, freqcount
);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDATBPImage CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void distanceAB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* R, long len) {
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϳ<EFBFBD><CDBF>ijߴ<C4B3>
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
CUDA_DistanceAB << <numBlocks, blockSize >> > (Ax, Ay, Az, Bx, By, Bz, R, len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void BdistanceAs(float* Ax, float* Ay, float* Az, float Bx, float By, float Bz, float* R, long len) {
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϳ<EFBFBD><CDBF>ijߴ<C4B3>
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
CUDA_B_DistanceA << <numBlocks, blockSize >> > (Ax, Ay, Az, Bx, By, Bz, R, len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void make_VectorA_B(float sX, float sY, float sZ, float* tX, float* tY, float* tZ, float* RstX, float* RstY, float* RstZ, long len) {
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϳ<EFBFBD><CDBF>ijߴ<C4B3>
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
CUDA_make_VectorA_B << <numBlocks, blockSize >> > (sX, sY, sZ, tX, tY, tZ, RstX, RstY, RstZ, len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void Norm_Vector(float* Vx, float* Vy, float* Vz, float* R, long len) {
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϳ<EFBFBD><CDBF>ijߴ<C4B3>
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
CUDA_Norm_Vector << <numBlocks, blockSize >> > (Vx, Vy, Vz, R, len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void cosAngle_VA_AB(float* Ax, float* Ay, float* Az, float* Bx, float* By, float* Bz, float* anglecos, long len) {
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
CUDA_cosAngle_VA_AB << <numBlocks, blockSize >> > (Ax, Ay, Az, Bx, By, Bz, anglecos, len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void SatelliteAntDirectNormal(float* RstX, float* RstY, float* RstZ,
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ,
float* thetaAnt, float* phiAnt
, long len) {
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
CUDA_SatelliteAntDirectNormal << <numBlocks, blockSize >> > (RstX, RstY, RstZ,
antXaxisX, antXaxisY, antXaxisZ,
antYaxisX, antYaxisY, antYaxisZ,
antZaxisX, antZaxisY, antZaxisZ,
antDirectX, antDirectY, antDirectZ,
thetaAnt, phiAnt
, len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void AntPatternInterpGain(float* anttheta, float* antphi, float* gain,
float* antpattern, float starttheta, float startphi, float dtheta, float dphi, int thetapoints, int phipoints, long len) {
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
//printf("\nCUDA_RTPC_SiglePRF blockSize:%d ,numBlock:%d\n", blockSize, numBlocks);
CUDA_AntPatternInterpGain << <numBlocks, blockSize >> > ( anttheta,antphi, gain,
antpattern,
starttheta, startphi, dtheta, dphi, thetapoints, phipoints,
len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void CUDARTPCPRF(float antPx, long len) {
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
printf("\nCUDA_RTPC_SiglePRF blockSize:%d ,numBlock:%d\n", blockSize, numBlocks);
CUDA_Test_HelloWorld << <numBlocks, blockSize >> > (antPx, len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void calculationEcho(float* sigma0, float* TransAnt, float* ReciveAnt,
float* localangle, float* R, float* slopeangle,
float nearRange, float Fs, float pt, float lamda, long FreqIDmax,
cuComplex* echoAmp, long* FreqID,
long len)
{
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
CUDA_calculationEcho << <numBlocks, blockSize >> > (sigma0, TransAnt, ReciveAnt,
localangle, R, slopeangle,
nearRange, Fs, pt, lamda, FreqIDmax,
echoAmp, FreqID,
len);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void CUDA_RTPC_SiglePRF(
float antPx, float antPy, float antPZ,
float antXaxisX, float antXaxisY, float antXaxisZ,
float antYaxisX, float antYaxisY, float antYaxisZ,
float antZaxisX, float antZaxisY, float antZaxisZ,
float antDirectX, float antDirectY, float antDirectZ,
float* demx, float* demy, float* demz, long* demcls,
float* demslopex, float* demslopey, float* demslopez, float* demslopeangle,
float* Tantpattern, float Tstarttheta, float Tstartphi, float Tdtheta, float Tdphi, int Tthetapoints, int Tphipoints,
float* Rantpattern, float Rstarttheta, float Rstartphi, float Rdtheta, float Rdphi, int Rthetapoints, int Rphipoints,
float lamda, float fs, float nearrange, float Pt, int Freqnumbers,
CUDASigmaParam* sigma0Paramslist, int sigmaparamslistlen,
cuComplex* outecho, int* d_echoAmpFID,
int linecount,int colcount) {
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
int numBlocks = (linecount* colcount + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
//printf("\nCUDA_RTPC_SiglePRF blockSize:%d ,numBlock:%d\n",blockSize,numBlocks);
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD> CUDA_RTPC_Kernel
CUDA_RTPC << <numBlocks, blockSize >> > (
antPx, antPy, antPZ,// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
antXaxisX, antXaxisY, antXaxisZ, // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵ
antYaxisX, antYaxisY, antYaxisZ, //
antZaxisX, antZaxisY, antZaxisZ,
antDirectX, antDirectY, antDirectZ,// <20><><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>
demx, demy, demz,
demcls, // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
demslopex, demslopey, demslopez, demslopeangle,// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
Tantpattern, Tstarttheta, Tstartphi, Tdtheta, Tdphi, Tthetapoints, Tphipoints,// <20><><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ<EFBFBD><CDBC><EFBFBD><EFBFBD>
Rantpattern, Rstarttheta, Rstartphi, Rdtheta, Rdphi, Rthetapoints, Rphipoints,// <20><><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ<EFBFBD><CDBC><EFBFBD><EFBFBD>
lamda, fs, nearrange, Pt, Freqnumbers, // <20><><EFBFBD><EFBFBD>
sigma0Paramslist, sigmaparamslistlen,// <20>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>-sigma<6D><61>ֵ<EFBFBD><D6B5>Ӧ<EFBFBD><D3A6><EFBFBD><EFBFBD>-ulaby
outecho, d_echoAmpFID,
linecount, colcount
);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
extern "C" void CUDAInterpSigma(
long* demcls,float* sigmaAmp, float* localanglearr,long len,
CUDASigmaParam* sigma0Paramslist, long sigmaparamslistlen) {// <20>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>-sigma<6D><61>ֵ<EFBFBD><D6B5>Ӧ<EFBFBD><D3A6><EFBFBD><EFBFBD>-ulaby
int blockSize = 256; // ÿ<><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߳<EFBFBD><DFB3><EFBFBD>
int numBlocks = (len + blockSize - 1) / blockSize; // <20><><EFBFBD><EFBFBD> pixelcount <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С
// <20><><EFBFBD><EFBFBD> CUDA <20>˺<EFBFBD><CBBA><EFBFBD>
CUDA_InterpSigma << <numBlocks, blockSize >> > (
demcls, sigmaAmp, localanglearr, len,
sigma0Paramslist, sigmaparamslistlen
);
#ifdef __CUDADEBUG__
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("CUDA_RTPC_SiglePRF CUDA Error: %s\n", cudaGetErrorString(err));
// Possibly: exit(-1) if program cannot continue....
}
#endif // __CUDADEBUG__
cudaDeviceSynchronize();
}
#endif