RasterProcessTool/SimulationSAR/RTPCProcessCls.cpp

828 lines
32 KiB
C++
Raw Normal View History

#include "stdafx.h"
#include "RTPCProcessCls.h"
#include "BaseConstVariable.h"
#include "SARSatelliteSimulationAbstractCls.h"
#include "SARSimulationTaskSetting.h"
#include "SatelliteOribtModel.h"
#include <QDebug>
#include "ImageOperatorBase.h"
#include "GeoOperator.h"
#include "EchoDataFormat.h"
#include <QDir>
#include <QDatetime>
#include <omp.h>
2024-11-25 17:51:20 +00:00
#include <QProgressDialog>
#include <QMessageBox>
#ifdef DEBUGSHOWDIALOG
#include "ImageShowDialogClass.h"
#endif
#ifdef __CUDANVCC___
#include "GPUTool.cuh"
#endif // __CUDANVCC___
RTPCProcessCls::RTPCProcessCls()
{
this->PluseCount = 0;
this->PlusePoint = 0;
this->TaskSetting = nullptr;
this->EchoSimulationData = nullptr;
this->DEMTiffPath = "";
this->LandCoverPath = "";
this->HHSigmaPath = "";
this->HVSigmaPath = "";
this->VHSigmaPath = "";
this->VVSigmaPath = "";
this->OutEchoPath = "";
this->DEMTiffPath.clear();
this->LandCoverPath.clear();
this->HHSigmaPath.clear();
this->HVSigmaPath.clear();
this->VHSigmaPath.clear();
this->VVSigmaPath.clear();
this->OutEchoPath.clear();
this->SigmaDatabasePtr = std::shared_ptr<SigmaDatabase>(new SigmaDatabase);
}
RTPCProcessCls::~RTPCProcessCls()
{
}
void RTPCProcessCls::setTaskSetting(std::shared_ptr < AbstractSARSatelliteModel> TaskSetting)
{
this->TaskSetting = std::shared_ptr < AbstractSARSatelliteModel>(TaskSetting);
qDebug() << "RTPCProcessCls::setTaskSetting";
}
void RTPCProcessCls::setEchoSimulationDataSetting(std::shared_ptr<EchoL0Dataset> EchoSimulationData)
{
this->EchoSimulationData = std::shared_ptr<EchoL0Dataset>(EchoSimulationData);
qDebug() << "RTPCProcessCls::setEchoSimulationDataSetting";
}
void RTPCProcessCls::setTaskFileName(QString EchoFileName)
{
this->TaskFileName = EchoFileName;
}
void RTPCProcessCls::setDEMTiffPath(QString DEMTiffPath)
{
this->DEMTiffPath = DEMTiffPath;
}
void RTPCProcessCls::setLandCoverPath(QString LandCoverPath)
{
this->LandCoverPath = LandCoverPath;
}
void RTPCProcessCls::setHHSigmaPath(QString HHSigmaPath)
{
this->HHSigmaPath = HHSigmaPath;
}
void RTPCProcessCls::setHVSigmaPath(QString HVSigmaPath)
{
this->HVSigmaPath = HVSigmaPath;
}
void RTPCProcessCls::setVHSigmaPath(QString VHSigmaPath)
{
this->VHSigmaPath = VHSigmaPath;
}
void RTPCProcessCls::setVVSigmaPath(QString VVSigmaPath)
{
this->VVSigmaPath = VVSigmaPath;
}
void RTPCProcessCls::setOutEchoPath(QString OutEchoPath)
{
this->OutEchoPath = OutEchoPath;
}
ErrorCode RTPCProcessCls::Process(long num_thread)
{
// RTPC <20>
qDebug() << u8"params init ....";
ErrorCode stateCode = this->InitParams();
if (stateCode != ErrorCode::SUCCESS) {
return stateCode;
}
else {}
qDebug() << "DEMMainProcess";
stateCode = this->DEMPreprocess();
if (stateCode != ErrorCode::SUCCESS) {
return stateCode;
}
else {}
qDebug() << "RTPCMainProcess";
stateCode = this->RTPCMainProcess(num_thread);
if (stateCode != ErrorCode::SUCCESS) {
return stateCode;
}
else {}
return ErrorCode::SUCCESS;
}
ErrorCode RTPCProcessCls::InitParams()
{
if (nullptr == this->TaskSetting || this->DEMTiffPath.isEmpty() ||
this->LandCoverPath.isEmpty() || this->HHSigmaPath.isEmpty() ||
this->HVSigmaPath.isEmpty() || this->VHSigmaPath.isEmpty() ||
this->VVSigmaPath.isEmpty()) {
return ErrorCode::RTPC_PARAMSISEMPTY;
}
else {
}
// <20><>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>·<EFBFBD><C2B7>
this->OutEchoPath = QDir(this->OutEchoPath).absolutePath();
// <20>ز<EFBFBD><D8B2><EFBFBD>С
double imgStart_end = this->TaskSetting->getSARImageEndTime() - this->TaskSetting->getSARImageStartTime();
this->PluseCount = ceil(imgStart_end * this->TaskSetting->getPRF());
double rangeTimeSample = (this->TaskSetting->getFarRange() - this->TaskSetting->getNearRange()) * 2.0 / LIGHTSPEED;
this->PlusePoint = ceil(rangeTimeSample * this->TaskSetting->getFs());
// <20><>ʼ<EFBFBD><CABC><EFBFBD>ز<EFBFBD><D8B2><EFBFBD><EFBFBD><EFBFBD>λ<EFBFBD><CEBB>
qDebug() << "--------------Echo Data Setting ---------------------------------------";
this->EchoSimulationData = std::shared_ptr<EchoL0Dataset>(new EchoL0Dataset);
this->EchoSimulationData->setCenterFreq(this->TaskSetting->getCenterFreq());
this->EchoSimulationData->setNearRange(this->TaskSetting->getNearRange());
this->EchoSimulationData->setFarRange(this->TaskSetting->getFarRange());
this->EchoSimulationData->setFs(this->TaskSetting->getFs());
this->EchoSimulationData->setCenterAngle(this->TaskSetting->getCenterLookAngle());
this->EchoSimulationData->setLookSide(this->TaskSetting->getIsRightLook() ? "R" : "L");
this->EchoSimulationData->OpenOrNew(OutEchoPath, TaskFileName, PluseCount, PlusePoint);
QString tmpfolderPath = QDir(OutEchoPath).filePath("tmp");
if (QDir(tmpfolderPath).exists() == false) {
QDir(OutEchoPath).mkpath(tmpfolderPath);
}
this->tmpfolderPath = tmpfolderPath;
return ErrorCode::SUCCESS;
}
ErrorCode RTPCProcessCls::DEMPreprocess()
{
this->demxyzPath = QDir(tmpfolderPath).filePath("demxyz.tif");
gdalImage demds(this->DEMTiffPath);
gdalImage demxyz = CreategdalImage(demxyzPath, demds.height, demds.width, 3, demds.gt, demds.projection, true, true);// X,Y,Z
// <20>ֿ<EFBFBD><D6BF><EFBFBD><EFBFBD>㲢ת<E3B2A2><D7AA>ΪXYZ
Eigen::MatrixXd demArr = demds.getData(0, 0, demds.height, demds.width, 1);
Eigen::MatrixXd demR = demArr;
Landpoint LandP{ 0,0,0 };
Point3 GERpoint{ 0,0,0 };
double R = 0;
double dem_row = 0, dem_col = 0, dem_alt = 0;
long line_invert = 1000;
double rowidx = 0;
double colidx = 0;
for (int max_rows_ids = 0; max_rows_ids < demds.height; max_rows_ids = max_rows_ids + line_invert) {
Eigen::MatrixXd demdata = demds.getData(max_rows_ids, 0, line_invert, demds.width, 1);
Eigen::MatrixXd xyzdata_x = demdata.array() * 0;
Eigen::MatrixXd xyzdata_y = demdata.array() * 0;
Eigen::MatrixXd xyzdata_z = demdata.array() * 0;
int datarows = demdata.rows();
int datacols = demdata.cols();
for (int i = 0; i < datarows; i++) {
for (int j = 0; j < datacols; j++) {
rowidx = i + max_rows_ids;
colidx = j;
demds.getLandPoint(rowidx, colidx, demdata(i, j), LandP); // <20><>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
LLA2XYZ(LandP, GERpoint); // <20><>γ<EFBFBD><CEB3>ת<EFBFBD><D7AA>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵ
xyzdata_x(i, j) = GERpoint.x;
xyzdata_y(i, j) = GERpoint.y;
xyzdata_z(i, j) = GERpoint.z;
}
}
demxyz.saveImage(xyzdata_x, max_rows_ids, 0, 1);
demxyz.saveImage(xyzdata_y, max_rows_ids, 0, 2);
demxyz.saveImage(xyzdata_z, max_rows_ids, 0, 3);
}
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
this->demsloperPath = QDir(tmpfolderPath).filePath("demsloper.tif");
this->demmaskPath = QDir(tmpfolderPath).filePath("demmask.tif");
gdalImage demsloperxyz = CreategdalImage(this->demsloperPath, demds.height, demds.width, 4, demds.gt, demds.projection, true, true);// X,Y,Z,cosangle
gdalImage demmask = CreategdalImage(this->demmaskPath, demxyz.height, demxyz.width, 1, demxyz.gt, demxyz.projection, true, true);// X,Y,Z
line_invert = 1000;
long start_ids = 0;
long dem_rows = 0, dem_cols = 0;
for (start_ids = 1; start_ids < demds.height; start_ids = start_ids + line_invert) {
Eigen::MatrixXd demdata = demds.getData(start_ids - 1, 0, line_invert + 2, demxyz.width, 1);
long startlineid = start_ids;
Eigen::MatrixXd maskdata = demmask.getData(start_ids - 1, 0, line_invert + 2, demxyz.width, 1);
Eigen::MatrixXd demsloper_x = demsloperxyz.getData(start_ids - 1, 0, line_invert + 2, demxyz.width, 1);
Eigen::MatrixXd demsloper_y = demsloperxyz.getData(start_ids - 1, 0, line_invert + 2, demxyz.width, 2);
Eigen::MatrixXd demsloper_z = demsloperxyz.getData(start_ids - 1, 0, line_invert + 2, demxyz.width, 3);
Eigen::MatrixXd demsloper_angle = demsloperxyz.getData(start_ids - 1, 0, line_invert + 2, demxyz.width, 4);
maskdata = maskdata.array() * 0;
Landpoint p0, p1, p2, p3, p4, pslopeVector, pp;
Vector3D slopeVector;
dem_rows = maskdata.rows();
dem_cols = maskdata.cols();
double sloperAngle = 0;
Vector3D Zaxis = { 0,0,1 };
double rowidx = 0, colidx = 0;
for (long i = 1; i < dem_rows - 1; i++) {
for (long j = 1; j < dem_cols - 1; j++) {
rowidx = i + startlineid;
colidx = j;
demds.getLandPoint(rowidx, colidx, demdata(i, j), p0);
demds.getLandPoint(rowidx - 1, colidx, demdata(i - 1, j), p1);
demds.getLandPoint(rowidx, colidx - 1, demdata(i, j - 1), p2);
demds.getLandPoint(rowidx + 1, colidx, demdata(i + 1, j), p3);
demds.getLandPoint(rowidx, colidx + 1, demdata(i, j + 1), p4);
pslopeVector = getSlopeVector(p0, p1, p2, p3, p4); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʸ<EFBFBD><CAB8>
slopeVector = { pslopeVector.lon,pslopeVector.lat,pslopeVector.ati };
pp = LLA2XYZ(p0);
Zaxis.x = pp.lon;
Zaxis.y = pp.lat;
Zaxis.z = pp.ati;
sloperAngle = getCosAngle(slopeVector, Zaxis); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
demsloper_x(i, j) = slopeVector.x;
demsloper_y(i, j) = slopeVector.y;
demsloper_z(i, j) = slopeVector.z;
demsloper_angle(i, j) = sloperAngle;
maskdata(i, j)++;
}
}
demmask.saveImage(maskdata, start_ids - 1, 0, 1);
demsloperxyz.saveImage(demsloper_x, start_ids - 1, 0, 1);
demsloperxyz.saveImage(demsloper_y, start_ids - 1, 0, 2);
demsloperxyz.saveImage(demsloper_z, start_ids - 1, 0, 3);
demsloperxyz.saveImage(demsloper_angle, start_ids - 1, 0, 4);
}
return ErrorCode::SUCCESS;
}
ErrorCode RTPCProcessCls::RTPCMainProcess(long num_thread)
{
omp_set_num_threads(num_thread);// <20><><EFBFBD><EFBFBD>openmp <20>߳<EFBFBD><DFB3><EFBFBD><EFBFBD><EFBFBD>
double widthSpace = LIGHTSPEED / 2 / this->TaskSetting->getFs();
double prf_time = 0;
double dt = 1 / this->TaskSetting->getPRF();// <20><>ȡÿ<C8A1><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
bool antflag = true; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
Landpoint LandP{ 0,0,0 };
Point3 GERpoint{ 0,0,0 };
double R = 0;
double dem_row = 0, dem_col = 0, dem_alt = 0;
long double imageStarttime = 0;
imageStarttime = this->TaskSetting->getSARImageStartTime();
//std::vector<SatelliteOribtNode> sateOirbtNodes(this->PluseCount);
std::shared_ptr<SatelliteOribtNode[]> sateOirbtNodes(new SatelliteOribtNode[this->PluseCount], delArrPtr);
{ // <20><>̬<EFBFBD><CCAC><EFBFBD>㲻ͬ
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̬
std::shared_ptr<double> antpos = this->EchoSimulationData->getAntPos();
double dAt = 1e-6;
double prf_time_dt = 0;
Landpoint InP{ 0,0,0 }, outP{ 0,0,0 };
for (long prf_id = 0; prf_id < this->PluseCount; prf_id++) {
prf_time = dt * prf_id;
prf_time_dt = prf_time + dAt;
SatelliteOribtNode sateOirbtNode;
SatelliteOribtNode sateOirbtNode_dAt;
this->TaskSetting->getSatelliteOribtNode(prf_time, sateOirbtNode, antflag);
this->TaskSetting->getSatelliteOribtNode(prf_time_dt, sateOirbtNode_dAt, antflag);
sateOirbtNode.AVx = (sateOirbtNode_dAt.Vx - sateOirbtNode.Vx) / dAt; // <20><><EFBFBD>ٶ<EFBFBD>
sateOirbtNode.AVy = (sateOirbtNode_dAt.Vy - sateOirbtNode.Vy) / dAt;
sateOirbtNode.AVz = (sateOirbtNode_dAt.Vz - sateOirbtNode.Vz) / dAt;
InP.lon = sateOirbtNode.Px;
InP.lat = sateOirbtNode.Py;
InP.ati = sateOirbtNode.Pz;
outP = XYZ2LLA(InP);
2024-11-25 17:51:20 +00:00
antpos.get()[prf_id * 19 + 0] = prf_time + imageStarttime;
antpos.get()[prf_id * 19 + 1] = sateOirbtNode.Px;
antpos.get()[prf_id * 19 + 2] = sateOirbtNode.Py;
antpos.get()[prf_id * 19 + 3] = sateOirbtNode.Pz;
antpos.get()[prf_id * 19 + 4] = sateOirbtNode.Vx;
antpos.get()[prf_id * 19 + 5] = sateOirbtNode.Vy;
antpos.get()[prf_id * 19 + 6] = sateOirbtNode.Vz;
antpos.get()[prf_id * 19 + 7] = sateOirbtNode.AntDirecX;
antpos.get()[prf_id * 19 + 8] = sateOirbtNode.AntDirecY;
antpos.get()[prf_id * 19 + 9] = sateOirbtNode.AntDirecZ;
antpos.get()[prf_id * 19 + 10] = sateOirbtNode.AVx;
antpos.get()[prf_id * 19 + 11] = sateOirbtNode.AVy;
antpos.get()[prf_id * 19 + 12] = sateOirbtNode.AVz;
antpos.get()[prf_id * 19 + 13] = sateOirbtNode.zeroDopplerDirectX;
antpos.get()[prf_id * 19 + 14] = sateOirbtNode.zeroDopplerDirectY;
antpos.get()[prf_id * 19 + 15] = sateOirbtNode.zeroDopplerDirectZ;
antpos.get()[prf_id * 19 + 16] = outP.lon;
antpos.get()[prf_id * 19 + 17] = outP.lat;
antpos.get()[prf_id * 19 + 18] = outP.ati;
sateOirbtNodes[prf_id] = sateOirbtNode;
}
this->EchoSimulationData->saveAntPos(antpos);
antpos.reset();
qDebug() << "Ant position finished sucessfully !!!";
}
// <20>ز<EFBFBD>
long echoIdx = 0;
double NearRange = this->EchoSimulationData->getNearRange(); // <20><>б<EFBFBD><D0B1>
double FarRange = this->EchoSimulationData->getFarRange();
double TimgNearRange = 2 * NearRange / LIGHTSPEED;
double TimgFarRange = 2 * FarRange / LIGHTSPEED;
double Fs = this->TaskSetting->getFs(); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
double Pt = this->TaskSetting->getPt() * this->TaskSetting->getGri();// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѹ 1v
//double GainAntLen = -3;// -3dB Ϊ<><CEAA><EFBFBD>߰뾶
long pluseCount = this->PluseCount;
double lamda = this->TaskSetting->getCenterLamda(); // <20><><EFBFBD><EFBFBD>
// <20><><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
std::shared_ptr<AbstractRadiationPattern> TransformPattern = this->TaskSetting->getTransformRadiationPattern(); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
std::shared_ptr<AbstractRadiationPattern> ReceivePattern = this->TaskSetting->getReceiveRadiationPattern(); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
std::shared_ptr<std::complex<double>> echo = this->EchoSimulationData->getEchoArr();
long PlusePoint = this->EchoSimulationData->getPlusePoints();
// <20><>ʼ<EFBFBD><CABC> Ϊ 0
for (long i = 0; i < pluseCount * PlusePoint; i++) {
echo.get()[i] = std::complex<double>(0, 0);
}
this->EchoSimulationData->saveEchoArr(echo, 0, PluseCount);
POLARTYPEENUM polartype = this->TaskSetting->getPolarType();
#ifndef __CUDANVCC___
QMessageBox::information(this, u8"<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʾ", u8"<EFBFBD><EFBFBD>ȷ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>װ<EFBFBD><EFBFBD>CUDA<EFBFBD><EFBFBD>");
#else
// RTPC CUDA<44>
if (pluseCount * 4 * 18 > Memory1MB * 100) {
long max = Memory1MB * 100 / 4 / 20 / PluseCount;
QMessageBox::warning(nullptr, u8"<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̫<EFBFBD><EFBFBD><EFBFBD><EFBFBD>", u8"<EFBFBD><EFBFBD>ǰƵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>£<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><EFBFBD>"+QString::number(max));
}
gdalImage demxyz(this->demxyzPath);// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
gdalImage demlandcls(this->LandCoverPath);// <20>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
gdalImage demsloperxyz(this->demsloperPath);// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֿ<EFBFBD><D6BF><EFBFBD><EFBFBD><EFBFBD>
long demRow = demxyz.height;
long demCol = demxyz.width;
long blokline = 100;
// ÿ<><C3BF> 250MB*16 = 4GB
blokline = Memory1MB * 500 / 8 / demCol;
blokline = blokline < 1 ? 1 : blokline;
bool bloklineflag = false;
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
double Tminphi = TransformPattern->getMinPhi();
double Tmaxphi = TransformPattern->getMaxPhi();
double Tmintheta = TransformPattern->getMinTheta();
double Tmaxtheta = TransformPattern->getMaxTheta();
long Tphinum = TransformPattern->getPhis().size();
long Tthetanum = TransformPattern->getThetas().size();
double TstartTheta = Tmintheta;
double TstartPhi = Tminphi;
double Tdtheta = (Tmaxtheta - Tmintheta) / (Tthetanum - 1);
double Tdphi = (Tmaxphi - Tminphi) / (Tphinum - 1);
float* h_TantPattern = (float*)mallocCUDAHost(sizeof(float) * Tthetanum * Tphinum);
float* d_TantPattern = (float*)mallocCUDADevice(sizeof(float) * Tthetanum * Tphinum);
for (long i = 0; i < Tthetanum; i++) {
for (long j = 0; j < Tphinum; j++) {
h_TantPattern[i*Tphinum+j] = TransformPattern->getGainLearThetaPhi(TstartTheta + i * Tdtheta, TstartPhi + j * Tdphi);
}
}
HostToDevice(h_TantPattern, d_TantPattern, sizeof(float)* Tthetanum* Tphinum);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
double Rminphi = ReceivePattern->getMinPhi();
double Rmaxphi = ReceivePattern->getMaxPhi();
double Rmintheta = ReceivePattern->getMinTheta();
double Rmaxtheta = ReceivePattern->getMaxTheta();
long Rphinum = ReceivePattern->getPhis().size();
long Rthetanum = ReceivePattern->getThetas().size();
double RstartTheta = Rmintheta;
double RstartPhi = Rminphi;
double Rdtheta = (Rmaxtheta - Rmintheta) / (Rthetanum - 1);
double Rdphi = (Rmaxphi - Rminphi) / (Rphinum - 1);
float* h_RantPattern = (float*)mallocCUDAHost(sizeof(float) * Rthetanum * Rphinum);
float* d_RantPattern = (float*)mallocCUDADevice(sizeof(float) * Rthetanum * Rphinum);
for (long i = 0; i < Rthetanum; i++) {
for (long j = 0; j < Rphinum; j++) {
h_RantPattern[i * Rphinum + j] = ReceivePattern->getGainLearThetaPhi(RstartTheta + i * Rdtheta, RstartPhi + j * Rdphi);
}
}
HostToDevice(h_RantPattern, d_RantPattern, sizeof(float)* Rthetanum* Rphinum);
//<2F><><EFBFBD><EFBFBD><EFBFBD>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD>
QMap<long, long> clamap;
long clamapid = 0;
long startline = 0;
for (startline = 0; startline < demRow; startline = startline + blokline) {
Eigen::MatrixXd clsland = demlandcls.getData(startline, 0, blokline, demlandcls.width, 1);
long clsrows = clsland.rows();
long clscols = clsland.cols();
long clsid = 0;
for (long ii = 0; ii < clsrows; ii++) {
for (long jj = 0; jj < clscols; jj++) {
clsid = clsland(ii, jj);
if (clamap.contains(clsid)) {}
else {
clamap.insert(clsid, clamapid);
clamapid = clamapid + 1;
}
}
}
}
CUDASigmaParam* h_clsSigmaParam = (CUDASigmaParam*)mallocCUDAHost(sizeof(CUDASigmaParam) * clamapid);
CUDASigmaParam* d_clsSigmaParam = (CUDASigmaParam*)mallocCUDADevice(sizeof(CUDASigmaParam) * clamapid);
{
std::map<long, SigmaParam> tempSigmaParam = this->SigmaDatabasePtr->getsigmaParams( polartype);
for (long id : clamap.keys()) {
SigmaParam tempp = tempSigmaParam[id];
h_clsSigmaParam[clamap[id]].p1 = tempp.p1;
h_clsSigmaParam[clamap[id]].p2 = tempp.p2;
h_clsSigmaParam[clamap[id]].p3 = tempp.p3;
h_clsSigmaParam[clamap[id]].p4 = tempp.p4;
h_clsSigmaParam[clamap[id]].p5 = tempp.p5;
h_clsSigmaParam[clamap[id]].p6 = tempp.p6;
}
}
HostToDevice(h_clsSigmaParam, d_clsSigmaParam, sizeof(CUDASigmaParam) * clamapid);
// <20><>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
Eigen::MatrixXd dem_x = demxyz.getData(0, 0, blokline, demxyz.width, 1); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
long tempDemRows = dem_x.rows();
long tempDemCols = dem_x.cols();
Eigen::MatrixXd dem_y = Eigen::MatrixXd::Zero(tempDemRows, tempDemCols);
Eigen::MatrixXd dem_z = Eigen::MatrixXd::Zero(tempDemRows, tempDemCols);
Eigen::MatrixXd demsloper_x = Eigen::MatrixXd::Zero(tempDemRows, tempDemCols);
Eigen::MatrixXd demsloper_y = Eigen::MatrixXd::Zero(tempDemRows, tempDemCols);
Eigen::MatrixXd demsloper_z = Eigen::MatrixXd::Zero(tempDemRows, tempDemCols);
Eigen::MatrixXd sloperAngle = Eigen::MatrixXd::Zero(tempDemRows, tempDemCols);
float* h_dem_x = (float*)mallocCUDAHost(sizeof(float) * blokline * tempDemCols);
float* h_dem_y = (float*)mallocCUDAHost(sizeof(float) * blokline * tempDemCols);
float* h_dem_z = (float*)mallocCUDAHost(sizeof(float) * blokline * tempDemCols);
float* h_demsloper_x = (float*)mallocCUDAHost(sizeof(float) * blokline * tempDemCols);
float* h_demsloper_y = (float*)mallocCUDAHost(sizeof(float) * blokline * tempDemCols);
float* h_demsloper_z = (float*)mallocCUDAHost(sizeof(float) * blokline * tempDemCols);
float* h_demsloper_angle = (float*)mallocCUDAHost(sizeof(float) * blokline * tempDemCols);
long* h_demcls = (long*)mallocCUDAHost(sizeof(long) * blokline * tempDemCols);
float* d_dem_x = (float*)mallocCUDADevice(sizeof(float) * blokline * tempDemCols); // 7
float* d_dem_y = (float*)mallocCUDADevice(sizeof(float) * blokline * tempDemCols);
float* d_dem_z = (float*)mallocCUDADevice(sizeof(float) * blokline * tempDemCols);
float* d_demsloper_x = (float*)mallocCUDADevice(sizeof(float) * blokline * tempDemCols);
float* d_demsloper_y = (float*)mallocCUDADevice(sizeof(float) * blokline * tempDemCols);
float* d_demsloper_z = (float*)mallocCUDADevice(sizeof(float) * blokline * tempDemCols);
float* d_demsloper_angle = (float*)mallocCUDADevice(sizeof(float) * blokline * tempDemCols);
long* d_demcls = (long*)mallocCUDADevice(sizeof(long) * blokline * tempDemCols);
// <20>ز<EFBFBD>
cuComplex* h_echoAmp = (cuComplex*)mallocCUDAHost(sizeof(cuComplex) * blokline * tempDemCols);
cuComplex* d_echoAmp = (cuComplex*)mallocCUDADevice(sizeof(cuComplex) * blokline * tempDemCols);
int* h_echoAmpFID = (int*)mallocCUDAHost(sizeof(int) * blokline * tempDemCols);
int* d_echoAmpFID = (int*)mallocCUDADevice(sizeof(int) * blokline * tempDemCols);
Eigen::MatrixXd landcover= Eigen::MatrixXd::Zero(blokline, tempDemCols);// <20><><EFBFBD><EFBFBD><E6B8B2><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
for (startline = 0; startline < demRow; startline = startline + blokline) {
long newblokline = blokline;
if ((startline + blokline) >= demRow) {
newblokline = demRow - startline;
bloklineflag = true;
}
dem_x = demxyz.getData(startline, 0, newblokline, demxyz.width, 1); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
dem_y = demxyz.getData(startline, 0, newblokline, demxyz.width, 2);
dem_z = demxyz.getData(startline, 0, newblokline, demxyz.width, 3);
demsloper_x = demsloperxyz.getData(startline, 0, newblokline, demsloperxyz.width, 1);
demsloper_y = demsloperxyz.getData(startline, 0, newblokline, demsloperxyz.width, 2);
demsloper_z = demsloperxyz.getData(startline, 0, newblokline, demsloperxyz.width, 3);
sloperAngle = demsloperxyz.getData(startline, 0, newblokline, demsloperxyz.width, 4);
landcover = demlandcls.getData(startline, 0, newblokline, demlandcls.width, 1);
if (bloklineflag) {
FreeCUDAHost(h_dem_x); FreeCUDADevice(d_dem_x);
FreeCUDAHost(h_dem_y); FreeCUDADevice(d_dem_y);
FreeCUDAHost(h_dem_z); FreeCUDADevice(d_dem_z);
FreeCUDAHost(h_demsloper_x); FreeCUDADevice(d_demsloper_x);
FreeCUDAHost(h_demsloper_y); FreeCUDADevice(d_demsloper_y);
FreeCUDAHost(h_demsloper_z); FreeCUDADevice(d_demsloper_z); //6
FreeCUDAHost(h_demsloper_angle); FreeCUDADevice(d_demsloper_angle);//7
FreeCUDAHost(h_demcls); FreeCUDADevice(d_demcls);//7
FreeCUDAHost(h_echoAmp); FreeCUDADevice(d_echoAmp);//19
FreeCUDAHost(h_echoAmpFID); FreeCUDADevice(d_echoAmpFID);//19
h_dem_x = (float*)mallocCUDAHost(sizeof(float) * newblokline * tempDemCols);
h_dem_y = (float*)mallocCUDAHost(sizeof(float) * newblokline * tempDemCols);
h_dem_z = (float*)mallocCUDAHost(sizeof(float) * newblokline * tempDemCols);
h_demsloper_x = (float*)mallocCUDAHost(sizeof(float) * newblokline * tempDemCols);
h_demsloper_y = (float*)mallocCUDAHost(sizeof(float) * newblokline * tempDemCols);
h_demsloper_z = (float*)mallocCUDAHost(sizeof(float) * newblokline * tempDemCols);
h_demsloper_angle = (float*)mallocCUDAHost(sizeof(float) * newblokline * tempDemCols);
h_demcls = (long*)mallocCUDAHost(sizeof(long) * newblokline * tempDemCols);
d_dem_x = (float*)mallocCUDADevice(sizeof(float) * newblokline * tempDemCols); // 7
d_dem_y = (float*)mallocCUDADevice(sizeof(float) * newblokline * tempDemCols);
d_dem_z = (float*)mallocCUDADevice(sizeof(float) * newblokline * tempDemCols);
d_demsloper_x = (float*)mallocCUDADevice(sizeof(float) * newblokline * tempDemCols);
d_demsloper_y = (float*)mallocCUDADevice(sizeof(float) * newblokline * tempDemCols);
d_demsloper_z = (float*)mallocCUDADevice(sizeof(float) * newblokline * tempDemCols);
d_demsloper_angle = (float*)mallocCUDADevice(sizeof(float) * newblokline * tempDemCols);
d_demcls = (long*)mallocCUDADevice(sizeof(long) * newblokline * tempDemCols);
h_echoAmp = (cuComplex*)mallocCUDAHost(sizeof(cuComplex) * newblokline * tempDemCols);;
d_echoAmp = (cuComplex*)mallocCUDADevice(sizeof(cuComplex) * newblokline * tempDemCols);;
h_echoAmpFID = (int*)mallocCUDAHost(sizeof(int) * newblokline * tempDemCols);
d_echoAmpFID = (int*)mallocCUDADevice(sizeof(int) * newblokline * tempDemCols);
}
{ // <20><><EFBFBD><EFBFBD> dem -> <20><><EFBFBD><EFBFBD>
float temp_dem_x;
float temp_dem_y;
float temp_dem_z;
float temp_demsloper_x;
float temp_demsloper_y;
float temp_demsloper_z;
float temp_sloperAngle;
long temp_demclsid;
for (long i = 0; i < newblokline; i++) {
for (long j = 0; j < demxyz.width; j++) {
temp_dem_x= float(dem_x(i, j)) ;
temp_dem_y= float(dem_y(i, j)) ;
temp_dem_z= float(dem_z(i, j)) ;
temp_demsloper_x= float(demsloper_x(i, j));
temp_demsloper_y= float(demsloper_y(i, j));
temp_demsloper_z= float(demsloper_z(i, j));
temp_sloperAngle= float(sloperAngle(i, j));
temp_demclsid = long(landcover(i,j));
h_dem_x[i * demxyz.width + j] = temp_dem_x ;
h_dem_y[i * demxyz.width + j] = temp_dem_y ;
h_dem_z[i * demxyz.width + j] = temp_dem_z ;
h_demsloper_x[i * demxyz.width + j] = temp_demsloper_x ;
h_demsloper_y[i * demxyz.width + j] = temp_demsloper_y ;
h_demsloper_z[i * demxyz.width + j] = temp_demsloper_z ;
h_demsloper_angle[i * demxyz.width + j] = temp_sloperAngle;
h_demcls[i * demxyz.width + j] = clamap[temp_demclsid];
}
}
}
HostToDevice((void*)h_dem_x, (void*)d_dem_x, sizeof(float) * newblokline * tempDemCols); // <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> -> GPU
HostToDevice((void*)h_dem_y, (void*)d_dem_y, sizeof(float) * newblokline * tempDemCols);
HostToDevice((void*)h_dem_z, (void*)d_dem_z, sizeof(float) * newblokline * tempDemCols);
HostToDevice((void*)h_demsloper_x, (void*)d_demsloper_x, sizeof(float) * newblokline * tempDemCols);
HostToDevice((void*)h_demsloper_y, (void*)d_demsloper_y, sizeof(float) * newblokline * tempDemCols);
HostToDevice((void*)h_demsloper_z, (void*)d_demsloper_z, sizeof(float) * newblokline * tempDemCols);
HostToDevice((void*)h_demsloper_angle, (void*)d_demsloper_angle, sizeof(float) * newblokline * tempDemCols);
HostToDevice((void*)h_demcls, (void*)d_demcls, sizeof(float) * newblokline * tempDemCols);//<2F>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD>
// <20><>ʱ<EFBFBD>ļ<EFBFBD><C4BC><EFBFBD><EFBFBD><EFBFBD>
float antpx =0;
float antpy =0;
float antpz =0;
float antvx =0;
float antvy =0;
float antvz =0;
float antdirectx =0;
float antdirecty =0;
float antdirectz =0;
float antXaxisX =0;
float antXaxisY =0;
float antXaxisZ =0;
float antYaxisX =0;
float antYaxisY =0;
float antYaxisZ =0;
float antZaxisX =0;
float antZaxisY =0;
float antZaxisZ = 0;
int pixelcount = newblokline * tempDemCols;
std::cout << " GPU Memory init finished!!!!" << std::endl;
for (long prfid = 0; prfid < pluseCount; prfid++) {
{// <20><><EFBFBD><EFBFBD>
// <20><><EFBFBD><EFBFBD>λ<EFBFBD><CEBB>
antpx = sateOirbtNodes[prfid].Px;
antpy = sateOirbtNodes[prfid].Py;
antpz = sateOirbtNodes[prfid].Pz;
antvx = sateOirbtNodes[prfid].Vx;
antvy = sateOirbtNodes[prfid].Vy;
antvz = sateOirbtNodes[prfid].Vz; //6
antdirectx = sateOirbtNodes[prfid].AntDirecX;
antdirecty = sateOirbtNodes[prfid].AntDirecY;
antdirectz = sateOirbtNodes[prfid].AntDirecZ; // 9 <20><><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>
antXaxisX = sateOirbtNodes[prfid].AntXaxisX;
antXaxisY = sateOirbtNodes[prfid].AntXaxisY;
antXaxisZ = sateOirbtNodes[prfid].AntXaxisZ;//12 <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵ
antYaxisX = sateOirbtNodes[prfid].AntYaxisX;
antYaxisY = sateOirbtNodes[prfid].AntYaxisY;
antYaxisZ = sateOirbtNodes[prfid].AntYaxisZ;//15
antZaxisX = sateOirbtNodes[prfid].AntZaxisX;
antZaxisY = sateOirbtNodes[prfid].AntZaxisY;
antZaxisZ = sateOirbtNodes[prfid].AntZaxisZ;//18
//CUDATestHelloWorld(1, 20);
CUDA_RTPC_SiglePRF(
antpx, antpy, antpz,// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
antXaxisX, antXaxisY, antXaxisZ, // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ϵ
antYaxisX, antYaxisY, antYaxisZ, //
antZaxisX, antZaxisY, antZaxisZ,
antdirectx, antdirecty, antdirectz,// <20><><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>
d_dem_x, d_dem_y, d_dem_z,
d_demcls, // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
d_demsloper_x, d_demsloper_y, d_demsloper_z, d_demsloper_angle,// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
d_TantPattern, TstartTheta,TstartPhi, Tdtheta, Tdphi, Tthetanum, Tphinum,// <20><><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ<EFBFBD><CDBC><EFBFBD><EFBFBD>
d_RantPattern, RstartTheta, RstartPhi, Rdtheta, Rdphi, Rthetanum,Rphinum,// <20><><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ<EFBFBD><CDBC><EFBFBD><EFBFBD>
lamda, Fs, NearRange, Pt, PlusePoint, // <20><><EFBFBD><EFBFBD>
d_clsSigmaParam, clamapid,// <20>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>-sigma<6D><61>ֵ<EFBFBD><D6B5>Ӧ<EFBFBD><D3A6><EFBFBD><EFBFBD>-ulaby
d_echoAmp, d_echoAmpFID,
newblokline,tempDemCols);
DeviceToHost(h_echoAmpFID, d_echoAmpFID, sizeof(long)* newblokline* tempDemCols);
DeviceToHost(h_echoAmp, d_echoAmp, sizeof(long)* newblokline* tempDemCols);
for (long i = 0; i < pixelcount; i++) {
echo.get()[prfid*PlusePoint+ h_echoAmpFID[i]] = echo.get()[prfid * PlusePoint + h_echoAmpFID[i]]
+std::complex<double>(h_echoAmp[i].x, h_echoAmp[i].y);
}
//for (long i = 0; i < PlusePoint; i++) {
// std::cout << echo.get()[prfid * PlusePoint + i] << std::endl;
//}
if (prfid % 100 == 0) {
std::cout << "\r[" << QDateTime::currentDateTime().toString("yyyy-MM-dd hh:mm:ss.zzz").toStdString() << "] dem:\t" << startline << "\t-\t" << startline + newblokline << "\t:\t pluse :\t" << prfid << " / " << pluseCount << std::endl;
}
}
}
}
std::cout << std::endl;
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͷ<EFBFBD>
FreeCUDAHost(h_dem_x); FreeCUDADevice(d_dem_x);
FreeCUDAHost(h_dem_y); FreeCUDADevice(d_dem_y);
FreeCUDAHost(h_dem_z); FreeCUDADevice(d_dem_z);
FreeCUDAHost(h_demsloper_x); FreeCUDADevice(d_demsloper_x);
FreeCUDAHost(h_demsloper_y); FreeCUDADevice(d_demsloper_y);
FreeCUDAHost(h_demsloper_z); FreeCUDADevice(d_demsloper_z); //6
FreeCUDAHost(h_demsloper_angle); FreeCUDADevice(d_demsloper_angle); //7
FreeCUDAHost(h_demcls); FreeCUDADevice(d_demcls);//7
FreeCUDAHost(h_echoAmp); FreeCUDADevice(d_echoAmp);//19
FreeCUDAHost(h_echoAmpFID); FreeCUDADevice(d_echoAmpFID);//19
FreeCUDAHost(h_TantPattern); FreeCUDADevice(d_TantPattern);
FreeCUDAHost(h_RantPattern); FreeCUDADevice(d_RantPattern);
FreeCUDAHost(h_clsSigmaParam); FreeCUDADevice(d_clsSigmaParam);
#endif
this->EchoSimulationData->saveEchoArr(echo, 0, PluseCount);
2024-11-25 17:51:20 +00:00
this->EchoSimulationData->saveToXml();
return ErrorCode::SUCCESS;
}
void RTPCProcessMain(long num_thread, QString TansformPatternFilePath, QString ReceivePatternFilePath, QString simulationtaskName, QString OutEchoPath, QString GPSXmlPath, QString TaskXmlPath, QString demTiffPath, QString LandCoverPath, QString HHSigmaPath, QString HVSigmaPath, QString VHSigmaPath, QString VVSigmaPath)
{
std::vector<RadiationPatternGainPoint> TansformPatternGainpoints = ReadGainFile(TansformPatternFilePath);
std::shared_ptr<AbstractRadiationPattern> TansformPatternGainPtr = CreateAbstractRadiationPattern(TansformPatternGainpoints);
std::vector<RadiationPatternGainPoint> ReceivePatternGainpoints = ReadGainFile(ReceivePatternFilePath);
std::shared_ptr<AbstractRadiationPattern> ReceivePatternGainPtr = CreateAbstractRadiationPattern(ReceivePatternGainpoints);
std::shared_ptr < AbstractSARSatelliteModel> task = ReadSimulationSettingsXML(TaskXmlPath);
if (nullptr == task)
{
return;
}
else {
// <20><>ӡ<EFBFBD><D3A1><EFBFBD><EFBFBD>
qDebug() << "--------------Task Seting ---------------------------------------";
qDebug() << "SARImageStartTime: " << task->getSARImageStartTime();
qDebug() << "SARImageEndTime: " << task->getSARImageEndTime();
qDebug() << "BandWidth: " << task->getBandWidth();
qDebug() << "CenterFreq: " << task->getCenterFreq();
qDebug() << "PRF: " << task->getPRF();
qDebug() << "Fs: " << task->getFs();
qDebug() << "POLAR: " << task->getPolarType();
qDebug() << "NearRange: " << task->getNearRange();
qDebug() << "FarRange: " << task->getFarRange();
qDebug() << (task->getFarRange() - task->getNearRange()) * 2 / LIGHTSPEED * task->getFs();
qDebug() << "\n\n";
}
// 1.2 <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
task->setTransformRadiationPattern(TansformPatternGainPtr);
task->setReceiveRadiationPattern(ReceivePatternGainPtr);
//2. <20><>ȡGPS<50>ڵ<EFBFBD>
std::vector<SatelliteOribtNode> nodes;
ErrorCode stateCode = ReadSateGPSPointsXML(GPSXmlPath, nodes);
if (stateCode != ErrorCode::SUCCESS)
{
qWarning() << QString::fromStdString(errorCode2errInfo(stateCode));
return;
}
else {}
std::shared_ptr<AbstractSatelliteOribtModel> SatelliteOribtModel = CreataPolyfitSatelliteOribtModel(nodes, task->getSARImageStartTime(), 3); // <20>Գ<EFBFBD><D4B3><EFBFBD><EFBFBD><EFBFBD>ʼʱ<CABC><CAB1><EFBFBD><EFBFBD>Ϊ ʱ<><CAB1><EFBFBD>ο<EFBFBD><CEBF><EFBFBD><EFBFBD><EFBFBD>
SatelliteOribtModel->setbeamAngle(task->getCenterLookAngle(), task->getIsRightLook()); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߷<EFBFBD><DFB7><EFBFBD>ͼ
if (nullptr == SatelliteOribtModel)
{
return;
}
else {
task->setSatelliteOribtModel(SatelliteOribtModel);
}
qDebug() << "-------------- RTPC init ---------------------------------------";
RTPCProcessCls rtpc;
rtpc.setTaskSetting(task); //qDebug() << "setTaskSetting";
rtpc.setTaskFileName(simulationtaskName); //qDebug() << "setTaskFileName";
rtpc.setDEMTiffPath(demTiffPath); //qDebug() << "setDEMTiffPath";
rtpc.setLandCoverPath(LandCoverPath); //qDebug() << "setLandCoverPath";
rtpc.setHHSigmaPath(HHSigmaPath); //qDebug() << "setHHSigmaPath";
rtpc.setHVSigmaPath(HVSigmaPath); //qDebug() << "setHVSigmaPath";
rtpc.setVHSigmaPath(VHSigmaPath); //qDebug() << "setVHSigmaPath";
rtpc.setVVSigmaPath(VVSigmaPath); //qDebug() << "setVVSigmaPath";
rtpc.setOutEchoPath(OutEchoPath); //qDebug() << "setOutEchoPath";
qDebug() << "-------------- RTPC start---------------------------------------";
rtpc.Process(num_thread); // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
qDebug() << "-------------- RTPC end---------------------------------------";
}