ISCE_INSAR/components/isceobj/Util/Library/python/Poly2D.py

457 lines
13 KiB
Python
Executable File

#!/usr/bin/env python
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Copyright 2013 California Institute of Technology. ALL RIGHTS RESERVED.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# United States Government Sponsorship acknowledged. This software is subject to
# U.S. export control laws and regulations and has been classified as 'EAR99 NLR'
# (No [Export] License Required except when exporting to an embargoed country,
# end user, or in support of a prohibited end use). By downloading this software,
# the user agrees to comply with all applicable U.S. export laws and regulations.
# The user has the responsibility to obtain export licenses, or other export
# authority as may be required before exporting this software to any 'EAR99'
# embargoed foreign country or citizen of those countries.
#
# Author: Piyush Agram
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from iscesys.ImageApi import DataAccessor as DA
from isceobj.Util.Polynomial import Polynomial
from iscesys.Component.Component import Component
ERROR_CHECK_FINALIZE = False
WIDTH = Component.Parameter('_width',
public_name='width',
default = 0,
type=float,
mandatory=False,
doc="Width of the image associated with the polynomial"
)
LENGTH = Component.Parameter('_length',
public_name='length',
default = 0,
type=float,
mandatory=False,
doc="Length of the image associated with the polynomial"
)
RANGE_ORDER = Component.Parameter('_rangeOrder',
public_name='rangeOrder',
default = None,
type=int,
mandatory=False,
doc="Polynomial order in the range direction"
)
AZIMUTH_ORDER = Component.Parameter('_azimuthOrder',
public_name='azimuthOrder',
default = None,
type=int,
mandatory=False,
doc="Polynomial order in the azimuth direction"
)
NORM_RANGE = Component.Parameter('_normRange',
public_name='normRange',
default = 1.,
type=float,
mandatory=False,
doc=""
)
MEAN_RANGE = Component.Parameter('_meanRange',
public_name='meanRange',
default = 0.,
type=float,
mandatory=False,
doc=""
)
NORM_AZIMUTH = Component.Parameter('_normAzimuth',
public_name='normAzimuth',
default = 1.,
type=float,
mandatory=False,
doc=""
)
MEAN_AZIMUTH = Component.Parameter('_meanAzimuth',
public_name='meanAzimuth',
default = 0.,
type=float,
mandatory=False,
doc=""
)
COEFFS = Component.Parameter('_coeffs',
public_name='coeffs',
default = [],
container=list,
type=float,
mandatory=False,
doc=""
)
class Poly2D(Polynomial):
'''
Class to store 2D polynomials in ISCE.
Implented as a list of lists, the coefficients
are stored as shown below:
[ [ 1, x^1, x^2, ....],
[ y^1, x^1 y^1, x^2 y^1, ....],
[ y^2, x^1 y^2, x^2 y^2, ....],
[ : : : :]]
where "x" corresponds to pixel index in range and
"y" corresponds to pixel index in azimuth.
The size of the 2D matrix will correspond to
[rangeOrder+1, azimuthOrder+1].
'''
family = 'poly2d'
parameter_list = (WIDTH,
LENGTH,
RANGE_ORDER,
AZIMUTH_ORDER,
NORM_RANGE,
MEAN_RANGE,
NORM_AZIMUTH,
MEAN_AZIMUTH,
COEFFS)
def __init__(self, family='', name=''):
'''
Constructor for the polynomial object. . The base class Polynomial set width and length
if image not None
'''
#at the moment all poly work with doubles
self._dataSize = 8
super(Poly2D,self).__init__(family if family else self.__class__.family, name)
self._instanceInit()
return
def initPoly(self,rangeOrder=None, azimuthOrder=None,coeffs=None, image=None):
super(Poly2D,self).initPoly(image)
if coeffs:
import copy
self._coeffs = copy.deepcopy(coeffs)
self._rangeOrder = int(rangeOrder) if rangeOrder else rangeOrder
self._azimuthOrder = int(azimuthOrder) if azimuthOrder else azimuthOrder
if (self._coeffs is not None) and (len(self._coeffs) > 0):
self.createPoly2D()
def dump(self,filename):
from copy import deepcopy
toDump = deepcopy(self)
self._poly = None
self._accessor= None
self._factory = None
super(Poly2D,self).dump(filename)
#tried to do self = deepcopy(toDump) but did not work
self._poly = toDump._poly
self._accessor = toDump._accessor
self._factory = toDump._factory
def load(self,filename):
super(Poly2D,self).load(filename)
#recreate the pointer objcts _poly, _accessor, _factory
self.createPoly2D()
def setCoeff(self, row, col, val):
"""
Set the coefficient at specified row, column.
"""
self._coeffs[row][col] = val
return
def setCoeffs(self, parms):
'''
Set the coefficients using another nested list.
'''
self._coeffs = [[0. for i in j] for j in parms]
for ii,row in enumerate(parms):
for jj,col in enumerate(row):
self._coeffs[ii][jj] = float(col)
return
def getCoeffs(self):
return self._coeffs
def setNormRange(self, parm):
self._normRange = float(parm)
def setMeanRange(self, parm):
self._meanRange = float(parm)
def getNormRange(self):
return self._normRange
def getMeanRange(self):
return self._meanRange
def setNormAzimuth(self, parm):
self._normAzimuth = float(parm)
def setMeanAzimuth(self, parm):
self._meanAzimuth = float(parm)
def getNormAzimuth(self):
return self._normAzimuth
def getMeanAzimuth(self):
return self._meanAzimuth
def getRangeOrder(self):
return self._rangeOrder
def getAzimuthOrder(self):
return self._azimuthOrder
def getWidth(self):
return self._width
def getLength(self):
return self._length
def __call__(self, azi,rng):
'''
Evaluate the polynomial.
This is much slower than the C implementation - only for sparse usage.
'''
y = (azi - self._meanAzimuth)/self._normAzimuth
x = (rng - self._meanRange)/self._normRange
res = 0.
for ii,row in enumerate(self._coeffs):
yfact = y**ii
for jj,col in enumerate(row):
res += self._coeffs[ii][jj] * yfact * (x**jj)
return res
def copy(self):
'''
Create a copy of the given polynomial instance.
Do not carry any associated image information.
Just the coefficients etc for scaling and manipulation.
'''
newObj = Poly2D()
g = self.exportToC()
newObj.importFromC(g)
return newObj
def exportToC(self):
'''
Use the extension module and return a pointer in C.
'''
from isceobj.Util import combinedlibmodule as CL
order = [self._azimuthOrder, self._rangeOrder]
means = [self._meanAzimuth, self._meanRange]
norms = [self._normAzimuth, self._normRange]
ptr = CL.exportPoly2DToC(order, means, norms, self._coeffs)
return ptr
def importFromC(self, pointer, clean=True):
'''
Uses information from the extension module structure to create Python object.
'''
from isceobj.Util import combinedlibmodule as CL
orders, means, norms, coeffs = CL.importPoly2DFromC(pointer)
self._azimuthOrder, self._rangeOrder = orders
self._meanAzimuth, self._meanRange = means
self._normAzimuth, self._normRange = norms
self._coeffs = []
for ii in range(self._azimuthOrder+1):
ind = ii * (self._rangeOrder+1)
self._coeffs.append(coeffs[ind:ind+self._rangeOrder+1])
if clean:
CL.freeCPoly2D(pointer)
return
def createPoly2D(self):
if self._accessor is None:
self._poly = self.exportToC()
self._accessor, self._factory = DA.createPolyAccessor(self._poly,"poly2d",
self._width,self._length,self._dataSize)
else:
print('C pointer already created. Finalize and recreate if image dimensions changed.')
def finalize(self):
from isceobj.Util import combinedlibmodule as CL
CL.freeCPoly2D(self._poly)
try:
DA.finalizeAccessor(self._accessor, self._factory)
except TypeError:
message = "Poly2D %s is already finalized" % str(self)
if ERROR_CHECK_FINALIZE:
raise RuntimeError(message)
else:
print(message)
self._accessor = None
self._factory = None
return None
def polyfit(self,xin,yin,zin,
sig=None,snr=None,cond=1.0e-12,
maxOrder=True):
'''
2D polynomial fitting.
xx = np.random.random(75)*100
yy = np.random.random(75)*200
z = 3000 + 1.0*xx + 0.2*xx*xx + 0.459*yy + 0.13 * xx* yy + 0.6*yy*yy
gg = Poly2D(rangeOrder=2, azimuthOrder=2)
gg.polyfit(xx,yy,z,maxOrder=True)
print(xx[5], yy[5], z[5], gg(yy[5], xx[5]))
print(xx[23], yy[23], z[23], gg(yy[23], xx[23]))
'''
import numpy as np
x = np.array(xin)
xmin = np.min(x)
xnorm = np.max(x) - xmin
if xnorm == 0:
xnorm = 1.0
x = (x - xmin)/ xnorm
y=np.array(yin)
ymin = np.min(y)
ynorm = np.max(y) - ymin
if ynorm == 0:
ynorm = 1.0
y = (y-ymin)/ynorm
z = np.array(zin)
bigOrder = max(self._azimuthOrder, self._rangeOrder)
arrList = []
for ii in range(self._azimuthOrder + 1):
yfact = np.power(y, ii)
for jj in range(self._rangeOrder+1):
xfact = np.power(x,jj) * yfact
if maxOrder:
if ((ii+jj) <= bigOrder):
arrList.append(xfact.reshape((x.size,1)))
else:
arrList.append(xfact.reshape((x.size,1)))
A = np.hstack(arrList)
if sig is not None and snr is not None:
raise Exception('Only one of sig / snr can be provided')
if sig is not None:
snr = 1.0 + 1.0/sig
if snr is not None:
A = A / snr[:,None]
z = z / snr
returnVal = True
val, res, rank, eigs = np.linalg.lstsq(A,z, rcond=cond)
if len(res)> 0:
print('Chi squared: %f'%(np.sqrt(res/(1.0*len(z)))))
else:
print('No chi squared value....')
print('Try reducing rank of polynomial.')
returnVal = False
self.setMeanRange(xmin)
self.setMeanAzimuth(ymin)
self.setNormRange(xnorm)
self.setNormAzimuth(ynorm)
coeffs = []
count = 0
for ii in range(self._azimuthOrder+1):
row = []
for jj in range(self._rangeOrder+1):
if maxOrder:
if (ii+jj) <= bigOrder:
row.append(val[count])
count = count+1
else:
row.append(0.0)
else:
row.append(val[count])
count = count+1
coeffs.append(row)
self.setCoeffs(coeffs)
return returnVal
def createPolynomial(order=None,
norm=None, offset=None):
'''
Create a polynomial with given parameters.
Order, Norm and Offset are iterables.
'''
poly = Poly2D(rangeOrder=order[0], azimuthOrder=order[1])
if norm:
poly.setNormRange(norm[0])
poly.setNormAzimuth(norm[1])
if offset:
poly.setMeanRange(offset[0])
poly.setMeanAzimuth(offset[1])
return poly
def createRangePolynomial(order=None, offset=None, norm=None):
'''
Create a polynomial in range.
'''
poly = Poly2D(rangeOrder=order, azimuthOrder=0)
if offset:
poly.setMeanRange(offset)
if norm:
poly.setNormRange(norm)
return poly
def createAzimuthPolynomial(order=None, offset=None, norm=None):
'''
Create a polynomial in azimuth.
'''
poly = Poly2D(rangeOrder=0, azimuthOrder=order)
if offset:
poly.setMeanAzimuth(offset)
if norm:
poly.setNormAzimuth(norm)
return poly