ISCE_INSAR/components/mroipac/baseline/Baseline.py

422 lines
16 KiB
Python
Executable File

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Copyright 2010 California Institute of Technology. ALL RIGHTS RESERVED.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# United States Government Sponsorship acknowledged. This software is subject to
# U.S. export control laws and regulations and has been classified as 'EAR99 NLR'
# (No [Export] License Required except when exporting to an embargoed country,
# end user, or in support of a prohibited end use). By downloading this software,
# the user agrees to comply with all applicable U.S. export laws and regulations.
# The user has the responsibility to obtain export licenses, or other export
# authority as may be required before exporting this software to any 'EAR99'
# embargoed foreign country or citizen of those countries.
#
# Author: Giangi Sacco
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
import math
import datetime
import logging
from iscesys.Component.Component import Component, Port
from isceobj.Util.mathModule import MathModule as MM
from isceobj.Orbit.Orbit import StateVector
# A class to hold three-dimensional basis vectors
class Basis(object):
def __init__(self):
self.x1 = []
self.x2 = []
self.x3 = []
# A class to hold three-dimensional basis vectors for spacecraft baselines
class BaselineBasis(Basis):
def __init__(self):
Basis.__init__(self)
def setPositionVector(self,x):
self.x1 = x
def getPositionVector(self):
return self.x1
def setVelocityVector(self,v):
self.x2 = v
def getVelocityVector(self):
return self.x2
def setCrossTrackVector(self,c):
self.x3 = c
def getCrossTrackVector(self):
return self.x3
BASELINE_LOCATION = Component.Parameter('baselineLocation',
public_name = 'BASELINE_LOCATION',
default = 'all',
type=str,
mandatory=False,
doc = ('Location at which to compute baselines - "all" implies '+
'top, middle, bottom of master image, '+
'"top" implies near start of master image, '+
'"bottom" implies at bottom of master image, '+
'"middle" implies near middle of master image. '+
'To be used in case there is a large shift between images.')
)
class Baseline(Component):
family = 'baseline'
logging_name = 'isce.mroipac.baseline'
parameter_list = (BASELINE_LOCATION,)
# Calculate the Look Angle of the master frame
def calculateLookAngle(self):
lookVector = self.calculateLookVector()
return math.degrees(math.atan2(lookVector[1],lookVector[0]))
# Calculate the look vector of the master frame
def calculateLookVector(self):
try:
z = self.masterFrame.terrainHeight
except:
z = 0.0
cosl = ((self.height-z)*(2*self.radius + self.height + z) +
self.startingRange1*self.startingRange1)/(
2*self.startingRange1*(self.radius + self.height)
)
# print('Height: ', self.height)
# print('Radius: ', self.radius)
# print('Range: ', self.startingRange1)
# print('COSL: ', cosl)
sinl = math.sqrt(1 - cosl*cosl)
return [cosl,sinl]
# Calculate the scalar spacecraft velocity
def calculateScalarVelocity(self,orbit,time):
sv = orbit.interpolateOrbit(time, method='hermite')
v = sv.getVelocity()
normV = MM.norm(v)
return normV
# Given an orbit and a time, calculate an orthogonal basis for cross-track and velocity directions
# based on the spacecraft position
def calculateBasis(self,orbit,time):
sv = orbit.interpolateOrbit(time, method='hermite')
x1 = sv.getPosition()
v = sv.getVelocity()
r = MM.normalizeVector(x1) # Turn the position vector into a unit vector
v = MM.normalizeVector(v) # Turn the velocity vector into a unit vector
c = MM.crossProduct(r,v) # Calculate the vector perpendicular to the platform position and velocity, this is the c, or cross-track vector
c = MM.normalizeVector(c)
v = MM.crossProduct(c,r) # Calculate a the "velocity" component that is perpendicular to the cross-track direction and position
basis = BaselineBasis()
basis.setPositionVector(r)
basis.setVelocityVector(v)
basis.setCrossTrackVector(c)
return basis
# Given two position vectors and a basis, calculate the offset between the two positions in this basis
def calculateBasisOffset(self,x1,x2,basis):
dx = [(x2[j] - x1[j]) for j in range(len(x1))] # Calculate the difference between the master and slave position vectors
z_offset = MM.dotProduct(dx,basis.getVelocityVector()) # Calculate the length of the projection of the difference in position and the "velocity" component
v_offset = MM.dotProduct(dx,basis.getPositionVector())
c_offset = MM.dotProduct(dx,basis.getCrossTrackVector())
return z_offset,v_offset,c_offset
# Calculate the baseline components between two frames
def baseline(self):
#TODO This could be further refactored into a method that calculates the baseline between
#TODO frames when given a master time and a slave time and a method that calls this method
#TODO multiple times to calculate the rate of baseline change over time.
for port in self.inputPorts:
port()
lookVector = self.calculateLookVector()
az_offset = []
vb = []
hb = []
csb = []
asb = []
s = [0.,0.,0.]
if self.baselineLocation.lower() == 'all':
print('Using entire span of image for estimating baselines')
masterTime = [self.masterFrame.getSensingStart(),self.masterFrame.getSensingMid(),self.masterFrame.getSensingStop()]
elif self.baselineLocation.lower() == 'middle':
print('Estimating baselines around center of master image')
masterTime = [self.masterFrame.getSensingMid() - datetime.timedelta(seconds=1.0), self.masterFrame.getSensingMid(), self.masterFrame.getSensingMid() + datetime.timedelta(seconds=1.0)]
elif self.baselineLocation.lower() == 'top':
print('Estimating baselines at top of master image')
masterTime = [self.masterFrame.getSensingStart(), self.masterFrame.getSensingStart() + datetime.timedelta(seconds=1.0), self.masterFrame.getSensingStart() + datetime.timedelta(seconds=2.0)]
elif self.baselineLocation.lower() == 'bottom':
print('Estimating baselines at bottom of master image')
masterTime = [self.masterFrame.getSensingStop() - datetime.timedelta(seconds=2.0), self.masterFrame.getSensingStop() - datetime.timedelta(seconds=1.0), self.masterFrame.getSensingStop()]
else:
raise Exception('Unknown baseline location: {0}'.format(self.baselineLocation))
slaveTime = [self.slaveFrame.getSensingMid() - datetime.timedelta(seconds=1.0), self.slaveFrame.getSensingMid(), self.slaveFrame.getSensingMid() + datetime.timedelta(seconds=1.0)]
# slaveTime = [self.slaveFrame.getSensingStart(),self.slaveFrame.getSensingMid(),self.slaveFrame.getSensingStop()]
for i in range(3):
# Calculate the Baseline at the start of the scene, mid-scene, and the end of the scene
# First, get the position and velocity at the start of the scene
self.logger.info("Sampling time %s" % i)
masterBasis = self.calculateBasis(self.masterOrbit,masterTime[i])
normV = self.calculateScalarVelocity(self.masterOrbit,masterTime[i])
# Calculate the distance moved since the last baseline point
if (i > 0):
deltaT = self._timeDeltaToSeconds(masterTime[i] - masterTime[0])
s[i] = s[i-1] + deltaT*normV
masterSV = self.masterOrbit.interpolateOrbit(masterTime[i], method='hermite')
slaveSV = self.slaveOrbit.interpolateOrbit(slaveTime[i], method='hermite')
x1 = masterSV.getPosition()
x2 = slaveSV.getPosition()
(z_offset,v_offset,c_offset) = self.calculateBasisOffset(x1,x2,masterBasis)
az_offset.append(z_offset) # Save the position offset
# Calculate a new start time
relativeSlaveTime = slaveTime[i] - datetime.timedelta(seconds=(z_offset/normV))
slaveSV = self.slaveOrbit.interpolateOrbit(relativeSlaveTime, method='hermite')
# Recalculate the offsets
x2 = slaveSV.getPosition()
(z_offset,v_offset,c_offset) = self.calculateBasisOffset(x1,x2,masterBasis)
vb.append(v_offset)
hb.append(c_offset)
csb.append(-hb[i]*lookVector[0] + vb[i]*lookVector[1]) # Multiply the horizontal and vertical baseline components by the look angle vector
asb.append(-hb[i]*lookVector[1] - vb[i]*lookVector[0])
#Calculating baseline
crossTrackBaselinePolynomialCoefficients = self.polynomialFit(s,hb)
verticalBaselinePolynomialCoefficients = self.polynomialFit(s,vb)
h_rate = crossTrackBaselinePolynomialCoefficients[1]
# Calculate the gross azimuth and range offsets
azb_avg = (az_offset[0] + az_offset[-1])/2.0
asb_avg = (asb[0] + asb[-1])/2.0
az_offset = (-azb_avg - h_rate*self.startingRange1*lookVector[1])/(self.azimuthPixelSize)
r_offset = (self.startingRange1 - self.startingRange2 - asb_avg)/(self.rangePixelSize)
# Populate class attributes
self.hBaselineTop = crossTrackBaselinePolynomialCoefficients[0]
self.hBaselineRate = crossTrackBaselinePolynomialCoefficients[1]
self.hBaselineAcc = crossTrackBaselinePolynomialCoefficients[2]
self.vBaselineTop = verticalBaselinePolynomialCoefficients[0]
self.vBaselineRate = verticalBaselinePolynomialCoefficients[1]
self.vBaselineAcc = verticalBaselinePolynomialCoefficients[2]
self.pBaselineTop = csb[0]
self.pBaselineBottom = csb[-1]
self.orbSlcAzimuthOffset = az_offset
self.orbSlcRangeOffset = r_offset
self.rangeOffset = self.startingRange1 - self.startingRange2
# Calculate a quadratic fit to the baseline polynomial
def polynomialFit(self,xRef,yRef):
size = len(xRef)
if not (len(xRef) == len(yRef)):
print("Error. Expecting input vectors of same length.")
raise Exception
if not (size == 3):
print("Error. Expecting input vectors of length 3.")
raise Exception
Y = [0]*size
A = [0]*size
M = [[0 for i in range(size) ] for j in range(size)]
for j in range(size):
for i in range(size):
M[j][i] = math.pow(xRef[j],i)
Y[j] = yRef[j]
MInv = MM.invertMatrix(M)
for i in range(size):
for j in range(size):
A[i] += MInv[i][j]*Y[j]
return A
def setRangePixelSize(self,pixelSize):
self.rangePixelSize = pixelSize
return
def setAzimuthPixelSize(self,pixelSize):
self.azimuthPixelSize = pixelSize
return
def setHeight(self,var):
self.height = float(var)
return
def setRadius(self,radius):
self.radius = radius
return
def setMasterStartingRange(self,range):
self.startingRange1 = range
return
def setSlaveStartingRange(self,range):
self.startingRange2 = range
return
def getHBaselineTop(self):
return self.hBaselineTop
def getHBaselineRate(self):
return self.hBaselineRate
def getHBaselineAcc(self):
return self.hBaselineAcc
def getVBaselineTop(self):
return self.vBaselineTop
def getVBaselineRate(self):
return self.vBaselineRate
def getVBaselineAcc(self):
return self.vBaselineAcc
def getPBaselineTop(self):
return self.pBaselineTop
def getPBaselineBottom(self):
return self.pBaselineBottom
def getOrbSlcAzimuthOffset(self):
return self.orbSlcAzimuthOffset
def getOrbSlcRangeOffset(self):
return self.orbSlcRangeOffset
def getRangeOffset(self):
return self.rangeOffset
def getPhaseConst(self):
return self.phaseConst
def getLookAngle(self):
return self.lookAngle
def _timeDeltaToSeconds(self,td):
return (td.microseconds + (td.seconds + td.days * 24.0 * 3600) * 10**6) / 10**6
def addMasterFrame(self):
frame = self._inputPorts.getPort(name='masterFrame').getObject()
self.masterFrame = frame
self.startingRange1 = frame.getStartingRange()
prf = frame.getInstrument().getPulseRepetitionFrequency()
self.rangePixelSize = frame.getInstrument().getRangePixelSize()
self.masterOrbit = frame.getOrbit()
midSV = self.masterOrbit.interpolateOrbit(frame.getSensingMid(), method='hermite')
self.azimuthPixelSize = midSV.getScalarVelocity()/prf
try:
ellipsoid = frame._ellipsoid #UAVSAR frame creates ellipsoid with peg
self.radius = ellipsoid.pegRadCur
self.height = frame.platformHeight
except:
ellipsoid = frame.getInstrument().getPlatform().getPlanet().get_elp()
self.radius = ellipsoid.get_a()
self.height = midSV.calculateHeight(ellipsoid)
def addSlaveFrame(self):
frame = self._inputPorts.getPort(name='slaveFrame').getObject()
self.slaveFrame = frame
self.startingRange2 = frame.getStartingRange()
self.slaveOrbit = frame.getOrbit()
def __init__(self, name=''):
self.masterOrbit = None
self.slaveOrbit = None
self.masterFrame = None
self.slaveFrame = None
self.lookAngle = None
self.rangePixelSize = None
self.azimuthPixelSize = None
self.height = None
self.radius = None
self.startingRange1 = None
self.startingRange2 = None
self.hBaselineTop = None
self.hBaselineRate = None
self.hBaselineAcc = None
self.vBaselineTop = None
self.vBaselineRate = None
self.vBaselineAcc = None
self.pBaselineTop = None
self.pBaselineBottom = None
self.orbSlcAzimuthOffset = None
self.orbSlcRangeOffset = None
self.rangeOffset = None
self.phaseConst = -99999
super(Baseline, self).__init__(family=self.__class__.family, name=name)
self.logger = logging.getLogger('isce.mroipac.baseline')
self.createPorts()
# Satisfy the old Component
self.dictionaryOfOutputVariables = {}
self.dictionaryOfVariables = {}
self.descriptionOfVariables = {}
self.mandatoryVariables = []
self.optionalVariables = []
return None
def createPorts(self):
# Set input ports
# It looks like we really need two orbits, a time, range and azimuth pixel sizes
# the two starting ranges, a planet, and the two prfs
# These provide the orbits
# These provide the range and azimuth pixel sizes, starting ranges,
# satellite heights and times for the first lines
masterFramePort = Port(name='masterFrame',method=self.addMasterFrame)
slaveFramePort = Port(name='slaveFrame',method=self.addSlaveFrame)
self._inputPorts.add(masterFramePort)
self._inputPorts.add(slaveFramePort)
return None
def __str__(self):
retstr = "Initial Baseline estimates \n"
retstr += "Cross-track Baseline: %s\n"
retlst = (self.hBaselineTop,)
retstr += "Vertical Baseline: %s\n"
retlst += (self.vBaselineTop,)
retstr += "Perpendicular Baseline: %s\n"
retlst += (self.pBaselineTop,)
retstr += "Bulk Azimuth Offset: %s\n"
retlst += (self.orbSlcAzimuthOffset,)
retstr += "Bulk Range Offset: %s\n"
retlst += (self.orbSlcRangeOffset,)
return retstr % retlst